Abstract:
A solar concentrator structure including a plurality of glass concentrator elements with a notch design. According to an embodiment, the present invention provides a solar cell concentrator structure. The structure includes an outside surface. The structure also includes an inside surface, the inside surface being substantially flat. The structure includes a first concentrator element integrally formed on the outside surface, the first concentrator element having a first curved surface, the curved surface being characterized by a radius of at least 1 mm, the curved surface having a first flat region of at least 0.25 mm, the flat region being at least 4 mm from the inside surface. The structure includes a second concentrator element integrally formed with the first concentrator element and the outside surface, the second concentrator element including a second curved surface and a second flat region.
Abstract:
The invention provides a solar concentrator structure including a first concentrating element. The first concentrating element includes a first aperture region, a first exit region, a first side and a second side. The solar concentrator structure further includes a second or more concentrating elements integrally coupled with the first concentrating element in a parallel manner. The second concentrating element includes a second aperture region, a second exit region, the third side, and a fourth side. The third side joins with the second side to form an apex notch structure characterized by a radius of curvature. Additionally, the solar concentrator structure includes a separation region by a width separating the first exit region from the second exit region and a triangular region including the apex notch structure and a base defined by the separation region and a refractive index of about 1 characterizing the triangular region.
Abstract:
Method and system for assembling a solar cell package. According to an embodiment, the present invention provides a method for fabricating solar cells for a solar panel. The method includes providing a first substrate member comprising a plurality of photovoltaic strips thereon. The method also includes providing an optical elastomer material overlying a portion of the first substrate member. The method further includes aligning a second substrate member comprising a plurality of optical concentrating elements thereon such that at least one of the optical concentrating elements being operably coupled to at least one of the plurality of photovoltaic strips, the second substrate member comprising an aperture surface region and an exit surface region. In addition, the method includes coupling the first substrate member to the second substrate member to form an interface region along a first peripheral region of the first substrate member and along a second peripheral region of the second substrate member.
Abstract:
A solar cell concentrator structure includes a first concentrator element having a first aperture region and a first exit region including a first back surface region and a first corner region. The structure also includes a second concentrator element integrally formed with the first concentrator element. The second concentrator element includes a second aperture region and a second exit region-including a second back surface region and a second corner region. Additionally, the structure includes a first radius of curvature of 0.25 mm and less characterizing the first corner structure and the second corner structure, a first coupling region between the first exit region and a first surface region of a first photovoltaic device. The structure further includes a second radius of curvature of 0.15 mm and less characterizing a region between the first concentrator element and the second concentrator element.
Abstract:
A solar panel apparatus and method. The apparatus has an optically transparent member comprising a predetermined thickness and an aperture surface region. The apparatus has a solar cell coupled to a portion of the optically transparent member. In a specific embodiment, the solar cell includes a transparent polymeric member and a plurality of photovoltaic regions provided within a portion of the transparent polymeric member. In a specific embodiment, the plurality of photovoltaic regions occupies at least about 10 percent of the aperture surface region of the transparent polymeric member and less than about 80% of the aperture surface region of the transparent polymeric member.
Abstract:
A method for manufacturing a glass concentrator for a solar module. The method includes providing a glass material in a molten state and processing the glass material in the molten state to form a ribbon glass including a first surface and a second surface. Additionally, the method includes subjecting the first surface to one or more drum members to form a plurality of concentrating structures while continuously passing the ribbon glass via the second surface over a plurality of rollers. Each of the concentrating structures includes an aperture region, an exit region, and one or more reflection regions. The aperture region is configured to receive incoming light and the one or more reflection regions are configured to concentrate the received incoming light to the exit region. The method further includes cutting the ribbon glass into one or more sheets of glasses including a predetermined number of the plurality of concentrating structures.
Abstract:
A solar module includes a substrate member, a plurality of photovoltaic strips arranged in an array configuration overlying the substrate member, and a concentrator structure comprising extruded glass material operably coupled to the plurality of photovoltaic strips. A plurality of elongated convex regions are configured within the concentrator structure. The plurality of elongated convex regions are respectively coupled to the plurality of photovoltaic strips. Each of the plurality of elongated convex regions includes a length and a convex surface region characterized by a radius of curvature, each of the elongated convex regions being configured to have a magnification ranging from about 1.5 to about 5. A coating material rendering the glass self-cleaning overlies the plurality of elongated convex regions.
Abstract:
A solar cell concentrator structure includes a first concentrator element having a first aperture region and a first exit region including a first back surface region and a first corner region. The structure also includes a second concentrator element integrally formed with the first concentrator element. The second concentrator element includes a second aperture region and a second exit region-including a second back surface region and a second corner region. Additionally, the structure includes a first radius of curvature of 0.25 mm and less characterizing the first corner structure and the second corner structure, a first coupling region between the first exit region and a first surface region of a first photovoltaic device. The structure further includes a second radius of curvature of 0.15 mm and less characterizing a region between the first concentrator element and the second concentrator element.
Abstract:
A solar panel apparatus and method. The apparatus has an optically transparent member comprising a predetermined thickness and an aperture surface region. The apparatus has a solar cell coupled to a portion of the optically transparent member. In a specific embodiment, the solar cell includes a transparent polymeric member and a plurality of photovoltaic regions provided within a portion of the transparent polymeric member. In a specific embodiment, the plurality of photovoltaic regions occupies at least about 10 percent of the aperture surface region of the transparent polymeric member and less than about 80% of the aperture surface region of the transparent polymeric member.
Abstract:
A solar module device. The device has a substrate having a surface region. The device has one or more photovoltaic regions overlying the surface region of the substrate. In a preferred embodiment, each of the photovoltaic strips is derived from dicing a solar cell in to each of the strips. Each of the strips is a functional solar cell. The device also has an impact resistant glass member having a plurality of elongated concentrating elements spatially arranged in parallel configuration and operably coupled respectively to the plurality of elongated concentrating elements. Preferably, the impact resistant glass has a strength of at least 3× greater than a soda lime glass, e.g., conventional soda lime glass for conventional solar cells, e.g., a low iron soda lime glass. In a preferred embodiment, the impact resistant glass member comprises a planar region and a concentrator region comprising the plurality of elongated concentrating element spatially arranged in parallel configuration.