摘要:
A method includes modifying a surface of an electrode active material including providing a solution or a suspension of a surface modification agent; providing the electrode active material; preparing a slurry of the solution or suspension of the surface modification agent, the electrode active material, a polymeric binder, and a conductive filler; casting the slurry in a metallic current collector; and drying the cast slurry.
摘要:
A compound has general Formula I, II, III, or IV: where X and Y are independently a group of Formula (A): and Z a group of Formula (B): The compounds may be used in electrolytes and electrochemical devices.
摘要:
Lithium-air cells using poly(ethyleneoxide) (PEO) siloxane-based or poly(ethyleneoxide) phosphate-based electrolytes may be prepared and exhibit improved charge carrying capacity. Such PEO silioxanes and phosphates generally have the formulas Ia, Ib, Ic, Id, IIa, IIb, IIc, where:
摘要:
An electrolyte comprising at least one organic aprotic solvent, at least one salt and at least one chelatoborate additive. A method of forming an SEI layer in a cell comprising a positive electrode, a negative electrode and an electrolyte, said method comprising the step of overcharging the electrolyte prior to fabricating the cell, or said cell during the formation cycle.
摘要:
Lithium-air cells using poly(ethyleneoxide) (PEO) siloxane-based or poly(ethyleneoxide) phosphate-based electrolytes may be prepared and exhibit improved charge carrying capacity. Such PEO silioxanes and phosphates generally have the formulas Ia, Ib, Ic, Id, IIa, IIb, IIc, where:
摘要:
The present invention relates in general to the field of lithium rechargeable batteries, and more particularly relates to the positive electrode design of lithium-ion batteries with improved high-rate pulse overcharge protection. Thus the present invention provides electrochemical devices containing a cathode comprising at least one primary positive material and at least one secondary positive material; an anode; and a non-aqueous electrolyte comprising a redox shuttle additive; wherein the redox potential of the redox shuttle additive is greater than the redox potential of the primary positive material; the redox potential of the redox shuttle additive is lower than the redox potential of the secondary positive material; and the redox shuttle additive is stable at least up to the redox potential of the secondary positive material.
摘要:
A method includes modifying a surface of an electrode active material including providing a solution or a suspension of a surface modification agent; providing the electrode active material; preparing a slurry of the solution or suspension of the surface modification agent, the electrode active material, a polymeric binder, and a conductive filler; casting the slurry in a metallic current collector; and drying the cast slurry.
摘要:
Metal complex salts may be used in lithium ion batteries. Such metal complex salts not only perform as an electrolyte salt in a lithium ion batteries with high solubility and conductivity, but also can act as redox shuttles that provide overcharge protection of individual cells in a battery pack and/or as electrolyte additives to provide other mechanisms to provide overcharge protection to lithium ion batteries. The metal complex salts have at least one aromatic ring. The aromatic moiety may be reversibly oxidized/reduced at a potential slightly higher than the working potential of the positive electrode in the lithium ion battery. The metal complex salts may also be known as overcharge protection salts.
摘要:
Non-aqueous electrolytes have poly(ethyleneoxide) siloxane or poly(ethyleneoxide) phosphate, a salt, and an electrode stabilizing additive. Electrochemical cells using such electrolytes may be prepared and exhibit improved charge carrying capacity.
摘要:
A lithium-air cell includes a negative electrode; an air positive electrode; and a non-aqueous electrolyte which includes an anion receptor that may be represented by one or more of the formulas.