Abstract:
Disclosed is a curved piezoelectric device maximizing an electrical potential of the piezoelectric material corresponding to an external mechanical stress. The curved piezoelectric device includes: a curved substrate; and a piezoelectric material provided on one surface or both surfaces of the curved substrate, wherein when a stress is applied, a neutral plane in which a compressive stress and a tensile stress are balanced is located in the curved substrate, wherein the location of the neutral plane is determined by y1 and y2 of Equation 1 or 2 below, and wherein the location of the neutral plane is controllable by adjusting a thickness (d), a sectional area (A) and a Young's modulus (E) of each of the curved substrate and the piezoelectric material: wherein y 1 = E 2 d 2 ( d 1 + d 2 ) 2 ( E 1 d 1 + E 2 d 2 ) , y 2 = E 1 d 1 ( d 1 + d 2 ) 2 ( E 1 d 1 + E 2 d 2 ) and Equation 1 y 1 = E 2 A 2 ( A 1 + A 2 ) 2 ( E 1 A 1 + E 2 A 2 ) , y 2 = E 1 A 1 ( A 1 + A 2 ) 2 ( E 1 A 1 + E 2 A 2 ) . Equation 2
Abstract:
A method of fabricating a cathode for a thin film battery includes depositing a cathode active material on a substrate, and crystallizing the cathode active material by irradiating laser onto the cathode active material. The cathode active material may be deposited on the substrate at normal temperature, and a light and easily processable polymer substrate may be used by crystallizing the cathode active material at low temperature using laser. A thin film battery including the cathode fabricated by the above method has excellent charging/discharging characteristics such as high discharge capacity.