THIN FILM CONDENSER FOR HIGH-DENSITY PACKAGING, METHOD FOR MANUFACTURING THE SAME, AND HIGH-DENSITY PACKAGE SUBSTRATE INCLUDING THE SAME
    2.
    发明申请
    THIN FILM CONDENSER FOR HIGH-DENSITY PACKAGING, METHOD FOR MANUFACTURING THE SAME, AND HIGH-DENSITY PACKAGE SUBSTRATE INCLUDING THE SAME 审中-公开
    用于高密度包装的薄膜冷凝器,其制造方法和包括其的高密度包装基材

    公开(公告)号:US20130314842A1

    公开(公告)日:2013-11-28

    申请号:US13677664

    申请日:2012-11-15

    Abstract: Provided are a thin film condenser for high-density packaging, a method for manufacturing the same and a high-density package substrate. The thin film condenser for high-density packaging, includes: a support substrate; a lower electrode formed on the support substrate; a dielectric thin film formed on the lower electrode; and an upper electrode formed on the dielectric thin film. Provided also is a method for manufacturing the same. The high-density package substrate, includes: at least two stacked substrates; thin film condensers embedded in the stacked substrates; an internal connection electrode formed in the stacked substrates and connecting the thin film condensers in series or in parallel; a surface electrode formed on the surface of the outermost substrate among the stacked substrates and connected to the internal connection electrode; and an integrated circuit connected to the surface electrode via a bump.

    Abstract translation: 提供一种用于高密度封装的薄膜电容器,其制造方法和高密度封装衬底。 用于高密度封装的薄膜冷凝器包括:支撑基板; 形成在所述支撑基板上的下电极; 形成在下电极上的电介质薄膜; 以及形成在电介质薄膜上的上电极。 还提供其制造方法。 高密度封装基板包括:至少两个堆叠的基板; 嵌入在堆叠的基板中的薄膜电容器; 内部连接电极,形成在堆叠的基板中并串联或并联连接薄膜电容器; 表面电极,形成在所述层叠基板的最外侧基板的表面上,与所述内部连接用电极连接; 以及通过凸块与表面电极连接的集成电路。

    CURVED PIEZOELECTRIC DEVICE
    6.
    发明申请
    CURVED PIEZOELECTRIC DEVICE 审中-公开
    弯曲压电器件

    公开(公告)号:US20160365501A1

    公开(公告)日:2016-12-15

    申请号:US15158158

    申请日:2016-05-18

    CPC classification number: H01L41/113

    Abstract: Disclosed is a curved piezoelectric device maximizing an electrical potential of the piezoelectric material corresponding to an external mechanical stress. The curved piezoelectric device includes: a curved substrate; and a piezoelectric material provided on one surface or both surfaces of the curved substrate, wherein when a stress is applied, a neutral plane in which a compressive stress and a tensile stress are balanced is located in the curved substrate, wherein the location of the neutral plane is determined by y1 and y2 of Equation 1 or 2 below, and wherein the location of the neutral plane is controllable by adjusting a thickness (d), a sectional area (A) and a Young's modulus (E) of each of the curved substrate and the piezoelectric material: wherein y 1 = E 2  d 2  ( d 1 + d 2 ) 2  ( E 1  d 1 + E 2  d 2 ) , y 2 = E 1  d 1  ( d 1 + d 2 ) 2  ( E 1  d 1 + E 2  d 2 )   and Equation   1 y 1 = E 2  A 2  ( A 1 + A 2 ) 2  ( E 1  A 1 + E 2  A 2 ) , y 2 = E 1  A 1  ( A 1 + A 2 ) 2  ( E 1  A 1 + E 2  A 2 ) . Equation   2

    OXIDE ELECTRONIC DEVICE AND METHOD FOR MANUFACTURING THE SAME
    7.
    发明申请
    OXIDE ELECTRONIC DEVICE AND METHOD FOR MANUFACTURING THE SAME 有权
    氧化物电子器件及其制造方法

    公开(公告)号:US20140048796A1

    公开(公告)日:2014-02-20

    申请号:US13774722

    申请日:2013-02-22

    Abstract: Provided is an oxide electronic device, including: an oxide substrate; an oxide thin film layer formed on the oxide substrate and containing an oxide that is heterogeneous with respect to the oxide substrate; and a ferroelectric layer formed on the oxide thin film layer and controlling electric conductivity of two-dimensional electron gas (2DEG) generated at an interface between the oxide substrate and the oxide thin film layer. Provided also is a method for manufacturing an oxide electronic device, including: depositing, on an oxide substrate, an oxide that is heterogeneous with respect to the oxide substrate to form an oxide thin film layer; and forming a ferroelectric layer on the oxide thin film layer, wherein the ferroelectric layer controls electric conductivity of 2DEG generated at an interface between the oxide substrate and the oxide thin film layer.

    Abstract translation: 提供一种氧化物电子器件,包括:氧化物衬底; 氧化物薄膜层,其形成在所述氧化物基板上并且含有相对于所述氧化物基板为异质的氧化物; 以及形成在所述氧化物薄膜层上并且控制在所述氧化物衬底和所述氧化物薄膜层之间的界面处产生的二维电子气(2DEG)的导电性的铁电层。 还提供了一种氧化物电子器件的制造方法,包括:在氧化物衬底上沉积相对于氧化物衬底是异质的氧化物以形成氧化物薄膜层; 以及在所述氧化物薄膜层上形成铁电体层,其中所述铁电体层控制在所述氧化物基板和所述氧化物薄膜层之间的界面处产生的2DEG的导电性。

    HYDROPHOBIC SUBSTRATE WITH ANTI-REFLECTIVE PROPERTY METHOD FOR MANUFACTURING THE SAME, AND SOLAR CELL MODULE INCLUDING THE SAME
    8.
    发明申请
    HYDROPHOBIC SUBSTRATE WITH ANTI-REFLECTIVE PROPERTY METHOD FOR MANUFACTURING THE SAME, AND SOLAR CELL MODULE INCLUDING THE SAME 审中-公开
    具有用于制造该反射性物质的方法的疏水性基材和包括其的太阳能电池模块

    公开(公告)号:US20130199612A1

    公开(公告)日:2013-08-08

    申请号:US13677733

    申请日:2012-11-15

    Abstract: Provided are a hydrophobic antireflective substrate, a method for manufacturing the same, and a solar cell module including the same. The hydrophobic antireflective substrate includes: a substrate; a nanostructured layer having nanostructured portions formed on the substrate and nanoporous portions formed between the nanostructured portions; and a hydrophobic coating film formed on the nanostructured portions. The method for manufacturing a hydrophobic antireflective substrate includes: forming a nanostructured layer having nanostructured portions and nanoporous portions formed between the nanostructured portions on a substrate; and forming a hydrophobic coating film on the nanostructured portions. In the hydrophobic antireflective substrate disclosed herein, a porous nanostructured layer is formed on the substrate and a hydrophobic coating film is formed on the nanostructured layer, so that the hydrophobic antireflective substrate has ultra-hydrophobic property corresponding to a large water droplet contact angle.

    Abstract translation: 提供了一种疏水性抗反射基板,其制造方法以及包括该防反射基板的太阳能电池模块。 疏水性抗反射基板包括:基板; 具有形成在所述基板上的纳米结构部分和形成在所述纳米结构部分之间的纳米多孔部分的纳米结构层; 以及形成在纳米结构部分上的疏水涂膜。 制造疏水性抗反射基板的方法包括:在基板上形成具有纳米结构部分和形成在纳米结构部分之间的纳米多孔部分的纳米结构层; 并在纳米结构部分上形成疏水性涂膜。 在本文公开的疏水性抗反射基板中,在基板上形成多孔纳米结构化层,在纳米结构层上形成疏水性涂膜,疏水性防反射基板具有对应于大的水滴接触角的超疏水性。

Patent Agency Ranking