Abstract:
A method of manufacturing an electrode layer and a method of manufacturing a capacitor using the same are provided. The method of manufacturing the electrode layer includes performing a first sub-cycle sequentially providing a tin precursor and an oxygen source on a substrate, performing a second sub-cycle sequentially providing a tin precursor, a tantalum precursor, and an oxygen source on the substrate on which the first sub-cycle is performed, and repeating a cycle including the first sub-cycle and the second sub-cycle to form a tantalum-doped tin oxide layer on the substrate. A tantalum concentration in the tantalum-doped tin oxide layer is determined by the tin precursor provided in the second sub-cycle.
Abstract:
The present disclosure relates to a paste for ohmic contact to p-type semiconductor, including a metal oxide and a binder, wherein the metal oxide is a rhenium oxide or a molybdenum oxide.
Abstract:
The present invention relates to a heterojunction semiconductor substrate having excellent dielectric properties, a method of manufacturing the same, and an electronic device using the same. The present invention provides a heterojunction semiconductor substrate with improved interlayer adhesion, low leakage current, and excellent dielectric properties that maintain strength in a ferroelectric fatigue experiment by interposing a metal layer and a conductive metal oxide layer on a semiconductor substrate to form an epitaxial oxide thin film layer composed of perovskite piezoelectric oxide. The heterojunction semiconductor substrate can be applied to sensors, actuators, transducers, or MEMS devices that use the high functionality of the high-quality epitaxial oxide thin film layer, including applications in electronic and optical devices.
Abstract:
Disclosed is a resistor thin film for micro-bolometer for growth of a vanadium dioxide (VO2) thin film in monoclinic VO2 crystal phase by deposition of VO2 on oxide with perovskite structure and a method for fabricating the same, and the resistor thin film for micro-bolometer according to the present disclosure includes a silicon substrate, an oxide thin film with perovskite structure formed on the silicon substrate, and a VO2 thin film in monoclinic crystal phase formed on the oxide thin film with perovskite structure.
Abstract:
Provided are a thin film condenser for high-density packaging, a method for manufacturing the same and a high-density package substrate. The thin film condenser for high-density packaging, includes: a support substrate; a lower electrode formed on the support substrate; a dielectric thin film formed on the lower electrode; and an upper electrode formed on the dielectric thin film. Provided also is a method for manufacturing the same. The high-density package substrate, includes: at least two stacked substrates; thin film condensers embedded in the stacked substrates; an internal connection electrode formed in the stacked substrates and connecting the thin film condensers in series or in parallel; a surface electrode formed on the surface of the outermost substrate among the stacked substrates and connected to the internal connection electrode; and an integrated circuit connected to the surface electrode via a bump.
Abstract:
Disclosed is a method of manufacturing an epitaxy oxide thin film of enhanced crystalline quality, and an epitaxy oxide thin film manufactured thereby according to the present invention. With respect to the manufacturing method of the epitaxy oxide thin film, which epitaxially grows an orientation film with an oxide capable of being oriented to (001), (110), and (111) on a single crystal Si substrate, because time required for raising a temperature of the orientation film up to an annealing temperature at room temperature is extremely minimized, thermal stress arising from the large difference in thermal expansion coefficients between the substrate and the orientation film is controlled, so crystalline quality of the epitaxy oxide thin film can be enhanced. Moreover, various epitaxial functional oxides are integrated into the thin film of enhanced crystalline quality so that a novel electronic device can be embodied.
Abstract:
Provided is an apparatus for generating direct current using continuous polarization change of piezoelectric materials. For example, a piezoelectric direct current generator includes a first electrode, a polarized piezoelectric material layer disposed on a first surface of the first electrode, and a second electrode disposed on a surface opposite to the first electrode and coupled to move along the piezoelectric material layer while pressing the piezoelectric material layer.
Abstract:
Provided is a dielectric layer that has a rock salt structure in a room temperature stable phase. The dielectric layer is made of a compound having a chemical formula of BexM1-xO, where M includes one of alkaline earth metals and x has a value greater than 0 and less than 0.5.
Abstract:
The present invention relates to a transparent anode active material having excellent light transmittance and electrical conductivity characteristics and a manufacturing method thereof, and a lithium ion battery and an all-solid-state lithium thin-film battery based on the same and having excellent charge/discharge capacity and charge/discharge rate, wherein the transparent anode active material according to the present invention is characterized by comprising a material of the following Chemical Formula 1: AgxSiOyN wherein x is 0
Abstract:
Provided is a self-resonance tuning piezoelectric energy harvester. The self-resonance tuning piezoelectric energy harvester includes a piezoelectric beam which extends along a horizontal direction, a fixing element which fixes two ends of the piezoelectric beam, and a mass which is connected to the piezoelectric beam movably along the piezoelectric beam, wherein the mass includes a through-hole through which the piezoelectric beam passes, and makes the movement through the through-hole. According to the principle of continuous movement to the resonance position, the mass of the self-resonance tuning piezoelectric energy harvester induces the piezoelectric beam to generate displacement to the maximum and maximize the electricity production capacity of the piezoelectric energy harvester.