摘要:
A satellite navigation system using multiple antennas for providing the position of multiple fiduciary points on an object even when fewer than four satellites are visible to some or all the antennas. Satellite signals from the multiple antennas are fed into at least one receiver. The receiver or receivers utilize constraint information, which is independent of the satellite signals. These external constraints are used to augment the signals received from the satellites, to obtain the position solution for each antenna. In a preferred embodiment, a common reference clock is used to provide an external constraint. Examples of other external constraints that can be used in the current invention are distance between the antennas, inertial measurement of attitude, rotational or linear position sensors, etc.
摘要:
A satellite navigation system using multiple antennas for providing the position of multiple fiduciary points on an object even when fewer than four satellites are visible to some or all the antennas. Satellite signals from the multiple antennas are fed into at least one receiver. The receiver or receivers utilize constraint information, which is independent of the satellite signals. These external constraints are used to augment the signals received from the satellites, to obtain the position solution for each antenna. In a preferred embodiment, a common reference clock is used to provide an external constraint. Examples of other external constraints that can be used in the current invention are distance between the antennas, inertial measurement of attitude, rotational or linear position sensors, etc.
摘要:
A satellite navigation system using multiple antennas for providing the position of multiple fiduciary points on an object even when fewer than four satellites are visible to some or all the antennas. Satellite signals from the multiple antennas are fed into at least one receiver. The receiver or receivers utilize constraint information, which is independent of the satellite signals. These external constraints are used to augment the signals received from the satellites, to obtain the position solution for each antenna. In a preferred embodiment, a common reference clock is used to provide an external constraint. Examples of other external constraints that can be used in the current invention are distance between the antennas, inertial measurement of attitude, rotational or linear position sensors, etc.
摘要:
An integrated stratigraphic method for determining total organic carbon (TOC) in a rock formation is provided, The method includes performing a geochemical analysis method to create a geochemical dataset; performing a chronostratigraphic method to create a chronostratigraphic dataset; performing a graphic correlation of the chronostratigaphic dataset from at least one location in the rock formation; determining a sequence stratigraphic model based on the graphic correlation; and generating a palaeogeographic reconstruction at one or more time periods by integrating the sequence stratigraphic model with the geochemical dataset to construct a predictive depositional model and determine a location and areal extent of total organic carbon within the rock formation,
摘要:
In a local positioning system, augmentation of the land-based system is provided by receiving signals from a GNSS. The signals from the land-based positioning system have a code phase accuracy better than one wavelength of a carrier of the signals from the GNSS. Different decorrelation may be used for signals from a satellite than from a land-based transmitter, such as using a digital decorrelator for signals from the satellite and an analog decorrelator for signals from a land-based transmitter. The receivers may include both a GNSS antenna and a local antenna. The phase centers of the two antennas are within one wavelength of the GNSS signals from each other. The local antenna is sized for operation in the X or ISM-bands of frequencies. The GNSS antenna is a patch antenna where the microwave antenna extends away from the patch antenna in at least one dimension.
摘要:
A low-cost, solid-state position sensor system suitable for making precise code and carrier phase measurements in the L1 and L2 bands of GPS uses an ordinary, low-cost OEM card single-frequency carrier phase tracking C/A code receiver and includes low-cost hardware for sensing the L1 and L2 components of GPS carrier phase. Such measurements are suitable for general use in a variety of fields, including surveying. They are also of sufficient quality to be used in controlling heavy machinery, such as aircraft, farm tractors, and construction and mining equipment. A C/A code continuous tracking GPS receiver is used to produce GPS positioning fixes and real-time L1 carrier phase measurements. This C/A code receiver generates timing and reference information for a digital sampling component. This sampling component processes the L1 and L2 signals from the GPS signals in view. A digital signal processing component coupled to this sampling component processes the raw samples in synchronous, batch form including a step to precisely unwrap the P(Y) carrier phase to baseband. The receiver outputs synchronous, carrier phase measurements associated with each ranging source and signal observable. The synchronous raw carrier phase measurements from the continuous tracking C/A code receiver and the digital sampling component may be used to resolve the cycle ambiguities to each ranging source with respect to a reference station at a known location. Within a short interval typically tens of seconds from initial turn on, continuous, synchronous raw measurements are provided by the GPS receiver and processed into precise position fixes.