Abstract:
A method for laser microdissection includes: processing a microscopic examination object by a laser beam using tuples of coordinate values which respectively indicate positions of target points on the examination object at least in a first spatial direction and a second spatial direction orthogonal to the first spatial direction, positions of at least three reference points being ascertained beforehand in each case in the first and second spatial directions and also in a third spatial direction orthogonal to the first and second spatial directions; defining a reference plane based on the positions of the reference points; and determining, for the target points, further coordinate values indicating an expected position of the target points on the examination object in the third spatial direction in each case, as determined further coordinate values, the determining of the further coordinate values being performed depending on the defined reference plane.
Abstract:
A method for obtaining dissectates from a microscopic sample using a laser microdissection system having a laser unit includes: a) at least partially circumcising and releasing from the sample dissectate regions of the sample as the dissectates using laser pulses provided by the laser unit; b) transferring the dissectates, by being released from the sample, along dissectate trajectories into receptacles of a dissectate collection unit; and c) positioning the receptacles of a dissectate collection unit using a positioning unit to collect the dissectates. The positioning of the receptacles of the dissectate collection unit using the positioning unit is automatically performed based on estimates of the dissectate trajectories, the estimates of the dissectate trajectories being obtained in a learning mode, the learning mode including obtaining dissectates by repeatedly performing at least steps a) and b). Parameters of the dissectate trajectories are determined for a plurality of dissectates.
Abstract:
A method for laser microdissection of a laser microdissection region of a prepared specimen includes driving a holder for the specimen into a holding position using a control device. First and second digital images are captured that depict a same portion of the prepared specimen, with the first image depicting the portion under at least one first microscopic examination method and the second image depicting the portion under at least a second microscopic examination method. A live overlay image is generated of the portion of the prepared image in a live mode. The live overlay is presented on a display area with the images overlaid onto one another. A marking is generated and captured on the live overlay image so as to define the laser microdissection region.
Abstract:
A method for obtaining dissectates from a microscopic sample using a laser microdissection system having a laser unit includes: a) at least partially circumcising and releasing from the sample dissectate regions of the sample as the dissectates using laser pulses provided by the laser unit; b) transferring the dissectates, by being released from the sample, along dissectate trajectories into receptacles of a dissectate collection unit; and c) positioning the receptacles of a dissectate collection unit using a positioning unit to collect the dissectates. The positioning of the receptacles of the dissectate collection unit using the positioning unit is automatically performed based on estimates of the dissectate trajectories, the estimates of the dissectate trajectories being obtained in a learning mode, the learning mode including obtaining dissectates by repeatedly performing at least steps a) and b). Parameters of the dissectate trajectories are determined for a plurality of dissectates.
Abstract:
A method for laser microdissection of a laser microdissection region of a prepared specimen includes driving a holder for the specimen into a holding position using a control device. First and second digital images are captured that depict a same portion of the prepared specimen, with the first image depicting the portion under at least one first microscopic examination method and the second image depicting the portion under at least a second microscopic examination method. A live overlay image is generated of the portion of the prepared image in a live mode. The live overlay is presented on a display area with the images overlaid onto one another. A marking is generated and captured on the live overlay image so as to define the laser microdissection region.
Abstract:
A method for laser microdissection includes detecting at least a portion of an object to be dissected in an image-producing manner in a laser microdissection system and generating a first digital object image. A first processing specification is defined based on the first digital object image. In a first processing step, the object is processed using a laser beam of the laser microdissection system in accordance with the first processing specification. At least a portion of the object is detected in an image-producing manner and a second digital object image is generated. A second processing specification is defined during execution of the first processing step based on the second digital object image. In a second processing step, the object is processed using the laser beam of the laser microdissection system in accordance with the second processing specification.