Abstract:
A method for examining and processing a microscopic sample arranged on a slide includes producing reference markings on the slide by a laser beam of a laser microdissection system. A digital image of the sample and the reference markings on the slide is produced by a digital optical imaging device. An image region is defined and first position information data which indicate a position of the image region is generated. The reference markings are identified in the image and second position information data which indicate a position of the reference markings in the image is generated. The reference markings are identified, and third position information data which indicate the position of the reference markings in the laser microdissection system is generated. The first, second and third position information data are correlated and a sample region which corresponds to the image region is processed.
Abstract:
A laser microdissectate specimen collector for a laser microdissection device includes a collecting chamber configured to receive a dissectate. The collecting chamber has, on a specimen side, an opening open to the environment for receiving the dissectate. The collecting chamber also has a first valve. The first valve, in a closed state thereof, forms a closure of the collecting chamber opposite to the opening for retaining the dissectate. A capillary line is connected downstream of the first valve to the collecting chamber such that the capillary line is configured to transport the dissectate out of the collecting chamber.
Abstract:
A laser microdissection includes a microscope having an incident-light device, a microscope objective, and a laser unit operable to produce a laser beam having a beam path extending through the incident-light device and through the microscope objective and intersecting an object plane of the microscope objective at an adjustable intersection point. The laser microdissection systems further includes an electrophoresis unit located below the object plane and containing an electrophoresis gel including one or more gel pockets, and a positioning device operable to position the electrophoresis gel in parallel with the object plane of the microscope objective and relative to a defined reference position such that dissectates of a sample that can be arranged in the object plane can be collected in the one or more gel pockets. The electrophoresis unit is operable to be attached by a coupling device. The dissectates are obtained via the laser beam.
Abstract:
A laser microdissectate specimen collector for a laser microdissection device includes a collecting chamber configured to receive a dissectate. The collecting chamber has, on a specimen side, an opening open to the environment for receiving the dissectate. The collecting chamber also has a first valve. The first valve, in a closed state thereof, forms a closure of the collecting chamber opposite to the opening for retaining the dissectate. A capillary line is connected downstream of the first valve to the collecting chamber such that the capillary line is configured to transport the dissectate out of the collecting chamber.
Abstract:
A method for laser microdissection includes detecting at least a portion of an object to be dissected in an image-producing manner in a laser microdissection system and generating a first digital object image. A first processing specification is defined based on the first digital object image. In a first processing step, the object is processed using a laser beam of the laser microdissection system in accordance with the first processing specification. At least a portion of the object is detected in an image-producing manner and a second digital object image is generated. A second processing specification is defined during execution of the first processing step based on the second digital object image. In a second processing step, the object is processed using the laser beam of the laser microdissection system in accordance with the second processing specification.
Abstract:
An imaging device for imaging a sample includes an excitation unit configured to emit excitation light for exciting a first fluorophore attached to a first feature of the sample and at least a second feature of the sample, and a detection unit configured to receive fluorescence light from the first fluorophore, and generate at least one fluorescence image from the received fluorescence light. The imaging device further includes a controller configured to determine, based on an image segmentation, a first image region of the fluorescence image corresponding to the first feature and a second image region of the fluorescence image corresponding to the second feature, generate a first image based on the first image region and a second image based on the second image region, and/or generate a composite image comprising at least the first image region and the second image region.
Abstract:
A method for performing a laser microdissection for cutting a dissectate from a specimen using a laser includes the step of providing the specimen in a light path of an illumination system. The specimen is illuminated by the illumination system. A detector detects light emanating from the specimen. The light detected by the detector is analyzed. It is determined, based on the analysis of the light detected by the detector, whether a receptacle for collecting the dissectate is disposed in a predetermined collection position, at which the dissectate is to be collected in the receptacle after it is cut from the specimen. Laser cutting of the dissectate from the specimen is initiated based on it having been determined that the receptacle is in the predetermined collection position.
Abstract:
A laser microscope system includes a microscope and a lens defining an optical axis and a rear focal plane, as well as a laser and an optical laser system coupling a laser beam into the microscope such that it passes through the rear focal plane of the lens at a fixed point. The optical laser system has an offset lens movable along an axis of the laser beam path to move the laser beam focus in the direction of the optical axis. The optical laser system has a compensating lens arranged in the laser beam path and movable along the axis of the laser beam path. A controller and/or a mechanical coupling device carries out a movement of the compensating lens along the axis of the laser beam path when the lens is moved such that the laser beam continues to pass through the fixed point.
Abstract:
A laser microdissection device includes a microscope stage for carrying a specimen to be cut, a laser light source for generating a laser beam and a microscope objective for focusing the laser beam onto the specimen. An optical laser scanning device is configured to deflect the laser beam so as to move the laser beam focus in an X-Y direction perpendicular to a main axis of the microscope objective. The laser microdissection device also includes at least one of a Z displacement device configured to move the microscope stage in a Z direction, or an optical focus shifting device configured to move the focus of the laser beam in the Z direction. The Z displacement device and/or optical focus shifting device are controllable, together with the optical laser scanning device, so as to move the laser beam focus in the specimen along a three-dimensional cut line in an X-Y-Z direction.
Abstract:
A method for obtaining dissectates from a microscopic sample using a laser microdissection system having a laser unit includes: a) at least partially circumcising and releasing from the sample dissectate regions of the sample as the dissectates using laser pulses provided by the laser unit; b) transferring the dissectates, by being released from the sample, along dissectate trajectories into receptacles of a dissectate collection unit; and c) positioning the receptacles of a dissectate collection unit using a positioning unit to collect the dissectates. The positioning of the receptacles of the dissectate collection unit using the positioning unit is automatically performed based on estimates of the dissectate trajectories, the estimates of the dissectate trajectories being obtained in a learning mode, the learning mode including obtaining dissectates by repeatedly performing at least steps a) and b). Parameters of the dissectate trajectories are determined for a plurality of dissectates.