Abstract:
An organic light emitting diode display is provided, which selectively disconnects one section of a scan line to darken a defective pixel when a defect occurs in a pixel provided with Thin Film Transistors (TFTs). The organic light emitting diode display includes four subpixel regions arranged in a 2×2 matrix on a substrate, a first horizontal scan line, a second horizontal scan line, a first vertical scan line, and a second vertical scan line. The first horizontal scan line passes through first and third subpixel regions. The second horizontal scan line passes through second and fourth subpixel regions. The first vertical scan line and the second vertical scan line connect the first horizontal scan line and the second horizontal scan line.
Abstract:
Disclosed are a transparent display panel and a transparent display device, which each include a plurality of data lines, a plurality of gate lines, and a plurality of transparent pixels each including a plurality of subpixels which display different colors and are disposed adjacent to each other in a first direction and a transparent area disposed adjacent to a corresponding subpixel in a second direction, thereby enabling a pixel defect such as a dark spot or a hot spot to be repaired and enabling normal driving. To this end, the transparent display panel and the transparent display device each include a repair line overlapping a first transparent pixel and a second transparent pixel adjacent to each other in the second direction in the plurality of transparent pixels.
Abstract:
Disclosed are a transparent display panel and a transparent display device, which each include a plurality of data lines, a plurality of gate lines, and a plurality of transparent pixels each including a plurality of subpixels which display different colors and are disposed adjacent to each other in a first direction and a transparent area disposed adjacent to a corresponding subpixel in a second direction, thereby enabling a pixel defect such as a dark spot or a hot spot to be repaired and enabling normal driving. To this end, the transparent display panel and the transparent display device each include a repair line overlapping a first transparent pixel and a second transparent pixel adjacent to each other in the second direction in the plurality of transparent pixels.
Abstract:
Provided are a display device and a method of manufacturing the same. A display device includes a coplanar thin-film transistor and a capacitor. The coplanar thin-film transistor comprises a gate electrode, an active layer including an oxide semiconductor, a source electrode and a drain electrode. The capacitor comprises a lower electrode, intermediate electrode and upper electrode. And the lower electrode is comprised of the same material as the active layer, and is conductivized. Also, the upper electrode is connected to the lower electrode. By using the conductivized lower electrode, the capacitor is configured to operate as multiple capacitors. Thus, the size of the capacitor is reduced, and sufficient capacitance may be secured with the capacitor with a smaller area. In this way, the area of each sub-pixel in the display device may be reduced, thereby achieving high resolution.
Abstract:
An OLED display device is provided. The OLED display device includes a first transistor connected to a data line and a first node; a second transistor connected to the first node and a second node; a third transistor connected to a reference voltage terminal and a third node; a fourth transistor connected to an initialization voltage terminal and the second node; a fifth transistor connected to the reference voltage terminal and the second node; a driving transistor; and an OLED connected to a low-level power supply voltage terminal and the second node. The driving transistor has a source connected to the second node, a gate connected to the third node, and a drain connected to a high-level power supply voltage terminal.
Abstract:
A transparent display device includes a display panel including first areas which are emission areas and second areas which are transmission areas, the display panel includes a first substrate and a second substrate facing each other, the first substrate includes an insulating layer having an open hole that is prepared by removing the insulating layer by at least a partial thickness in the second area, and the second substrate includes a transparent spacer located in the second area and pulled into the open hole.
Abstract:
Disclosed is an organic light emitting display device that may include first and second pads on a pad area of a substrate, wherein the first pad includes a first bonding region and a first link region, and the second pad includes a second bonding region, a contact region, and a second link region. A first bonding electrode in the first bonding region is electrically connected to one or more signal lines in the active area of the device through contact holes in the first bonding region. A second bonding electrode is electrically connected to one or more signal lines of the device through contact holes in the contact region. The contact region is closer to the active area than the first bonding region.
Abstract:
Disclosed is an organic light emitting display device that may include first and second pads on a pad area of a substrate, wherein the first pad includes a first bonding region and a first link region, and the second pad includes a second bonding region, a contact region, and a second link region. A first bonding electrode in the first bonding region is electrically connected to one or more signal lines in the active area of the device through contact holes in the first bonding region. A second bonding electrode is electrically connected to one or more signal lines of the device through contact holes in the contact region. The contact region is closer to the active area than the first bonding region.
Abstract:
Provided are a display device and a method of manufacturing the same. A display device includes a coplanar thin-film transistor and a capacitor. The coplanar thin-film transistor comprises a gate electrode, an active layer including an oxide semiconductor, a source electrode and a drain electrode. The capacitor comprises a lower electrode, intermediate electrode and upper electrode. And the lower electrode is comprised of the same material as the active layer, and is conductivized. Also, the upper electrode is connected to the lower electrode. By using the conductivized lower electrode, the capacitor is configured to operate as multiple capacitors. Thus, the size of the capacitor is reduced, and sufficient capacitance may be secured with the capacitor with a smaller area. In this way, the area of each sub-pixel in the display device may be reduced, thereby achieving high resolution.