Abstract:
The present disclosure relates to a flat panel display with an optical image sensor embedded therein. The flat panel display includes a directional light unit. The directional light unit comprises a cover substrate with a surface area corresponding to the length and width; a first low refractive index layer attached to the lower surface of the cover substrate; a light-exiting element disposed to correspond to the display area, on the lower surface of the first low refractive index layer; a light-entering element disposed outside the display area at one side of the light-exiting element, on the lower surface of the first low refractive index layer; a second low refractive index layer disposed on the lower surfaces of the light-exiting element and light-entering element and attached to the upper surface of the display panel; and a light source disposed to face the light-entering element.
Abstract:
The disclosure relates to a viewing angle switchable back light unit wherein a general mode and a privacy mode in a liquid crystal display can be selected. A thin film type back light unit includes a light guide film, a light radiator, a first light source, and a light collimator. The light guide film includes a light entering part at one side, a light guiding part extending from the one side to an opposite side of the one side, and a light radiating part on one plane surface. The light radiator is on the light radiating part. The first light source faces the light entering part. The light collimator is on the light entering part facing the first light source. The light collimator receives an expanding light from the first light source, converts the expanding light into collimated light, and provides the collimated light to the light entering part.
Abstract:
The present disclosure relates to a flat panel display embedding an optical imaging sensor such as a fingerprint image sensor. The present disclosure suggests a flat panel type optical image sensor comprising: a cover plate having a sensing area; a light incident film disposed at a side under the cover plate; a light radiating film disposed under the cover plate corresponding to the sensing area; a low refractive layer under the light incident film and the light radiating film; a light source disposed under the light incident film; and a light sensor disposed under the light incident film.
Abstract:
The present disclosure relates to a thin film type controlled viewing window back light unit and a thin flat type Controlled Viewing window Display using the same. The present disclosure suggests a thin film type back light unit which can include: a base film having a width and a length, and including a high refractive film and a low refractive film stacked on the high refractive film; an incident pattern disposed at one side of a bottom surface of the base film; a reflective pattern disposed at an opposite side apart from the one side with the length of the bottom surface of the base film, and covering the width of the opposite side; a light radiating pattern disposed on an upper surface of the base film; a holographic film for controlling a viewing-window disposed on the light radiating pattern; and a light source being apart from the incident pattern, and providing an incident light to the incident pattern.
Abstract:
The present disclosure relates to a flat panel display embedding an optical imaging sensor such as a fingerprint image sensor. The present disclosure suggests a flat panel display embedding an image sensor comprising: a display panel including a display area and a non-display area; and a directional optical unit having a length and a width corresponding to the display panel and a thickness, and attached on a top surface of the display panel, wherein the directional optical unit provides a sensing light beam to the display area, and wherein the sensing light is collimated and directionized to a predetermined direction.
Abstract:
A fingerprint sensor integrated display using a holographic optical element and a recording and reconstruction method of the holographic optical element are disclosed. The fingerprint sensor integrated display includes a display panel on which an input image is displayed, a transparent substrate disposed on the display panel, and a light entering element configured to irradiate light from a light source onto the transparent substrate. A particular type of visual information is reconstructed through a holographic element at a location of the light entering element.
Abstract:
The present disclosure relates to a display for a personal immersion apparatus for embodying the virtual reality or the augmented reality. The present disclosure suggests a display for a personal immersion apparatus comprising: a display panel; and an imaging lens; wherein the display panel includes: a plurality of pixel areas disposed on a substrate; an emission area defined in the each pixel area; a non-emission area surrounding the emission area in the each pixel area; and a micro deflector configured to deflect lights scattered over the non-emission area from the emission area to a normal direction with respect to a surface of the substrate, and to provide the deflected lights to the imaging lens, and wherein the imaging lens is disposed apart from the display panel with a focal length of the imaging lens.
Abstract:
Disclosed herein is a display device capable of recognizing a fine fingerprint without a complicated construction such as a bulky optical device. The display device comprises a display panel having a display area and a non-display area outside the display area; a light source disposed below the non-display area of the display panel to irradiate the display panel with light; a directional light unit disposed on an upper portion of the display panel, refracting the light supplied from the light source at a first angle to travel from the non-display area to the display area in total internal reflection, reflecting some of the totally internally reflected light at a second angle, and then supplying a light reflected by an object having biometric information to the display panel; and an optical sensor disposed below the display panel and receiving the light exited from the directional light unit.
Abstract:
The present disclosure relates to a flat panel display having an optical imaging sensor such as a fingerprint image sensor. The present disclosure provides a flat panel display having an image sensor comprising: a display panel including a display area and a non-display area, the display panel having a top surface; a directional optical unit attached to the top surface of the display panel, the directional optical unit having a length along a length axis of the display panel, a width along a width axis of the display panel and a thickness along a thickness axis of the display panel; a sensing light control film disposed under the display panel; and an image sensor disposed under the sensing light control film.
Abstract:
The present disclosure relates to a flat panel display embedding an optical imaging sensor such as a fingerprint image sensor. The present disclosure provides a flat panel display embedding an image sensor comprising: a display panel including a display area and a non-display area; and a directional optical unit having a length and a width corresponding to the display panel and a thickness, and attached on a top surface of the display panel, wherein the directional optical unit includes: a first cover plate and a second cover plate having a size corresponding to the length and the width and joining each other by a first low refractive layer between the first cover plate and the second cover plate; a light radiating film corresponding to the display area under the second cover plate; a light incident film disposed outside of the display area at one lateral side of the light radiating film, under the second cover plate; a second low refractive layer disposed under the light radiating film and the light incident film, and attached on the top surface of the display panel; and a light source disposed at the lateral side of the display panel as facing with the light incident film.