Abstract:
The present invention relates to an organic light emitting diode display device capable of sensing driving current of each pixel with a simple configuration to compensate for a luminance deviation between pixels and a pixel current sensing method thereof. The organic light emitting diode display device includes a display panel including 2N (N being a natural number) pixels that share a reference line though which a reference signal is supplied and are respectively connected to 2N data lines through which data signals are applied, and a data driver for driving the 2N pixels sharing the reference line in a time division manner through the data lines, sensing currents of the time-division-driven 2N pixels as voltages through the shared reference line and outputting the sensed currents, in a sensing mode.
Abstract:
The present invention relates to an organic light emitting diode display device capable of sensing driving current of each pixel with a simple configuration to compensate for a luminance deviation between pixels and a pixel current sensing method thereof. The organic light emitting diode display device includes a display panel including 2N (N being a natural number) pixels that share a reference line though which a reference signal is supplied and are respectively connected to 2N data lines through which data signals are applied, and a data driver for driving the 2N pixels sharing the reference line in a time division manner through the data lines, sensing currents of the time-division-driven 2N pixels as voltages through the shared reference line and outputting the sensed currents, in a sensing mode.
Abstract:
An organic electroluminescent display device includes an organic electroluminescent diode receiving a driving voltage and a first ground voltage; first and second driving thin film transistors for providing a driving current to the organic electroluminescent diode; a first switching thin film transistor receiving a data voltage and switched by an nth scan signal; a second switching thin film transistor switched by a current providing signal; a third switching thin film transistor receiving a second ground voltage and switched by a selection signal; a fourth switching thin film transistor disposed among an output terminal of the second switching thin film transistor; and a first capacitor disposed among the output terminal of the first switching thin film transistor, the gate terminal of the first driving thin film transistor and the gate terminal of the second driving thin film transistor.