Abstract:
The present invention relates to an organic light emitting diode display device capable of sensing driving current of each pixel with a simple configuration to compensate for a luminance deviation between pixels and a pixel current sensing method thereof. The organic light emitting diode display device includes a display panel including 2N (N being a natural number) pixels that share a reference line though which a reference signal is supplied and are respectively connected to 2N data lines through which data signals are applied, and a data driver for driving the 2N pixels sharing the reference line in a time division manner through the data lines, sensing currents of the time-division-driven 2N pixels as voltages through the shared reference line and outputting the sensed currents, in a sensing mode.
Abstract:
A display device includes first and second gate lines extending in a first direction; first and second data lines extending in a second direction and crossing the first and second gate lines; and a first horizontal pixel row including first, second, and third sub-pixels sequentially arranged in the first direction, wherein the first sub-pixel is connected to the first gate line and the first data line, the second sub-pixel is connected to the second gate line and the first data line, and the third sub-pixel is connected to the first gate line and the second data line.
Abstract:
The present invention relates to an organic light emitting diode display device capable of sensing driving current of each pixel with a simple configuration to compensate for a luminance deviation between pixels and a pixel current sensing method thereof. The organic light emitting diode display device includes a display panel including 2N (N being a natural number) pixels that share a reference line though which a reference signal is supplied and are respectively connected to 2N data lines through which data signals are applied, and a data driver for driving the 2N pixels sharing the reference line in a time division manner through the data lines, sensing currents of the time-division-driven 2N pixels as voltages through the shared reference line and outputting the sensed currents, in a sensing mode.
Abstract:
An organic electroluminescent display device includes an organic electroluminescent diode receiving a driving voltage and a first ground voltage; first and second driving thin film transistors for providing a driving current to the organic electroluminescent diode; a first switching thin film transistor receiving a data voltage and switched by an nth scan signal; a second switching thin film transistor switched by a current providing signal; a third switching thin film transistor receiving a second ground voltage and switched by a selection signal; a fourth switching thin film transistor disposed among an output terminal of the second switching thin film transistor; and a first capacitor disposed among the output terminal of the first switching thin film transistor, the gate terminal of the first driving thin film transistor and the gate terminal of the second driving thin film transistor.
Abstract:
Discussed are a display device and a method for controlling the same, which are capable of achieving a reduction in power consumption, through selective application of a charge share mode or a pre-charge mode in accordance with the swing width of a data voltage. The disclosed method includes the steps of determining a positive or negative polarity of input image data on the basis of reference data and outputting a pre-charge enable signal when two successive image data have the same polarity; supplying a pre-charge voltage to a corresponding output channel in response to the pre-enable signal; and converting the image data into a data voltage, supplying the converted data voltage to a corresponding data line through the corresponding output channel.
Abstract:
Disclosed are an OLED display device and method for sensing characteristic parameters of pixel driving circuits. The display device includes a display panel including pixels each having a light emitting element and a pixel driving circuit for independently driving the light emitting element, and a characteristic parameter detecting unit for driving the pixel driving circuit of one of the plural pixels, which is a sensing pixel, sensing a voltage discharged in accordance with characteristics of a driving TFT in the pixel driving circuit of the sensing pixel, on a data line connected to the pixel driving circuit of the sensing pixel, among data lines connected to respective pixel driving circuits of the pixels, and detecting a threshold voltage (Vth) of the driving TFT and a deviation of a process characteristic parameter (k-parameter) of the driving TFT, using the measured voltage.