Abstract:
A motor driving apparatus including a motor including a stator and a rotor rotating in the stator, an inverter configured to supply a driving voltage to a stator coil wound on the stator so as to rotate the rotor, and a control unit configured to, when a target command value is received, change a predetermined reference start-up time point to a start-up time point corresponding to an electrical angle position of the rotor in correspondence with the target command value per rotation of the rotor and to control the inverter to supply the driving voltage at the start-up time point.
Abstract:
A brushless direct current (BLDC) motor is disclosed. The BLDC motor includes a shaft made of a nonmagnetic material, a plurality of magnets surrounding the outer circumference of the shaft, a stator surrounding the outer circumferences of the magnets, wherein each of the magnets has an arc-shaped outer circumferential surface, an arc-shaped inner circumferential surface facing the shaft, and opposite side surfaces facing other adjacent magnets, and the magnets include a first magnet magnetized in a direction directed from the outer circumferential surface to the inner circumferential surface, a second magnet magnetized in a direction directed from the inner circumferential surface to the outer circumferential surface, and a third magnet magnetized in a direction directed from one side surface to the other side surface. The efficiency of the motor is improved while eddy current loss is minimized.
Abstract:
A motor driving apparatus including a motor including a stator and a rotor rotating in the stator, an inverter configured to supply a driving voltage to a stator coil wound on the stator so as to rotate the rotor, and a control unit configured to, when a target command value is received, change a predetermined reference start-up time point to a start-up time point corresponding to an electrical angle position of the rotor in correspondence with the target command value per rotation of the rotor and to control the inverter to supply the driving voltage at the start-up time point.
Abstract:
Embodiments provide a printed circuit board including a copper foil layer to form a circuit pattern on a base layer, and an insulation layer laminated on the copper foil layer, and wherein the circuit pattern includes a solder pattern, to which an inverter switch element is soldered to supply drive power to a motor, a heat radiation pattern spaced apart from the solder pattern and to contact with one surface of the inverter switch element so as to absorb and radiate heat in the inverter switch element, a heat circulation pattern, through which the heat absorbed by the heat radiation pattern is circulated, and an element pattern formed on both sides of the heat circulation pattern to allow a thermistor element, a resistance value of which is varied according to the heat, to be soldered to the element pattern.