Abstract:
A method of transmitting a control signal using efficient multiplexing is disclosed. The present invention includes the steps of multiplexing a plurality of 1-bit control signals within a prescribed time-frequency domain by code division multiple access (CDMA) and transmitting the multiplexed control signals, wherein a plurality of the 1-hit control signals include a plurality of the 1-bit control signals for a specific transmitting side. Accordingly, reliability on 1-bit control signal transmission can be enhanced.
Abstract:
A method of transmitting a sounding reference signal includes generating a physical uplink control channel (PUCCH) carrying uplink control information on a subframe, the subframe comprising a plurality of SC-FDMA (single carrier-frequency division multiple access) symbols, wherein the uplink control information is punctured on one SC-FDMA symbol in the subframe, and transmitting simultaneously the uplink control information on the PUCCH and a sounding reference signal on the punctured SC-FDMA symbol. The uplink control information and the sounding reference signal can be simultaneously transmitted without affecting a single carrier characteristic.
Abstract:
A method of operating a relay station in a wireless communication system is provided. The method includes operating in a first mode comprising a first sub-mode and a second sub-mode, in the first sub-mode a first downlink and a first uplink between a base station and the relay station being simultaneously activated, in the second sub-mode a second downlink and a second uplink between the relay station and a mobile station being simultaneously activated, and operating in a second mode comprising a third sub-mode and a fourth sub-mode, in the third sub-mode the first downlink and the second uplink being simultaneously activated, in the fourth sub-mode the first uplink and the second downlink being simultaneously activated.
Abstract:
A method of transmitting a control signal using efficient multiplexing is disclosed. The present invention includes the steps of multiplexing a plurality of 1-bit control signals within a prescribed time-frequency domain by code division multiple access (CDMA) and transmitting the multiplexed control signals, wherein a plurality of the 1-hit control signals include a plurality of the 1-bit control signals for a specific transmitting side. Accordingly, reliability on 1-bit control signal transmission can be enhanced.
Abstract:
A method of decoding a backhaul downlink signal of a relay node (RN). A higher layer signal indicating a maximum transmission rank is received from a base station (BS). Control information is received through a relay control channel from the BS. The control information is demodulated and mapped to resource elements (REs) which do not overlap with user equipment-specific reference signal (URS) REs in a control region which is used for the relay control channel transmission of the BS. The URS REs are reserved REs for URSs according to the maximum transmission rank. The control information is demodulated based on URSs transmitted by the BS on one fixed antenna port n, where n is a natural number.
Abstract:
A method for transmitting information of resources for use in transmission of ACK/NACK signals in a mobile communication system is disclosed. An example method for receiving ACK/NACK signals in a mobile communication system is also disclosed. When resources for transmission of data and resources for transmission of control information of the data are scheduled through virtual unit resources, the method identifies information of resources for receiving an ACK/NACK signal for transmission data mapped to information of at least one of a virtual unit resource allocated to the transmission data and a virtual unit resource allocated to control information of the transmission data, and receives the ACK/NACK signal for the transmission data through the information of resources for receiving the ACK/NACK signal.
Abstract:
A method of allocating pilot bits in a wireless communication system using a multiple carrier modulation (MCM) is disclosed. The method includes allocating a plurality of precoded data symbols precoded by a precoding matrix module and a plurality of non-precoded pilot bits to a plurality of subcarriers, and transmitting the allocated precoded data symbols and the allocated non-precoded pilot bits.
Abstract:
According to one embodiment, a method for transmitting an uplink signal includes transmitting the uplink signal including a block of data symbols. The block of data symbols are mapped to at least two sets of subcarrier blocks. Each data symbol of the block of data symbols is mapped to one of subcarriers of the at least two sets of subcarrier blocks. The at least two sets of subcarrier blocks are not contiguous in frequency. The block of data symbols are mapped in sequence starting with a first data symbol to the at least two sets of subcarrier blocks and in increasing order of subcarrier index.
Abstract:
A packet data transmitting method and mobile communication system using the same enables transmission of common ACK/NACK information from each sector of a base station to a user entity in softer handover. The method includes receiving via at least one of the plurality of sectors a data packet from the mobile terminal, the data packet being correspondingly received for each of the at least one of the plurality of sectors; combining the correspondingly received data packets, to obtain a signal having a highest signal-to-noise ratio; decoding the value obtained by the combining; determining a transmission status of the data packet according to the decoding; and transmitting to the mobile terminal a common ACK/NACK signal including one of a common ACK signal and a common NACK signal according to the determining, the common ACK/NACK signal being transmitted via each of the at least one sector.
Abstract:
A method performed by a user equipment (UE) in a wireless communication system, includes receiving a sounding reference signal (SRS) configuration via a radio resource control (RRC) signaling, the SRS configuration indicating a subframe configured for SRS transmission; and transmitting an SRS based on the SRS configuration, wherein the SRS configuration includes an indicator indicating whether an aperiodic SRS transmission or a periodic SRS transmission is performed in the subframe configured for SRS transmission, wherein, if the indicator indicates that the aperiodic SRS transmission is performed, the SRS is aperiodically transmitted in the configured subframe in response to reception of request information for requesting a transmission of the SRS, and wherein, if the indicator indicates that the periodic SRS transmission is performed, the SRS is periodically transmitted in the configured subframe.