Abstract:
An electric working machine in one aspect of the present disclosure includes a motor, a controller, and a setter. The controller is configured to change a rotational state of the motor, in response to an establishment of a condition for change after the motor is initiated, from a low speed rotation to a high speed rotation. The setter is configured to set, based on a situation in the motor in the low speed rotation, a control variable of the motor in the high speed rotation and/or the condition for change.
Abstract:
An electric power tool includes a motor and a controller. The controller is configured to control the motor. Specifically, the controller is configured to operate in at least two modes: a first mode and a second mode. The first mode includes a plurality of stages having different control conditions related to the motor. The second mode includes at least a common stage having control conditions same as those for a specific stage among the plurality of stages of the first mode. The common stage of the second mode starts more quickly than the specific stage of the first mode.
Abstract:
A rechargeable electric power tool includes a battery pack that is detachably provided on a housing accommodating a motor and that supplies electric power to the motor, and a tool that is driven by the motor. A standby switch and a lock-on switch are arranged at the housing. The standby switch is able to set the rechargeable electric power tool to a standby state where the rechargeable electric power tool waits for the motor to be driven. The lock-on switch is able to shift the rechargeable electric power tool from the standby state to a state where the motor is driven so as to keep the state where the motor is driven.
Abstract:
A variable speed switch includes a switch main body portion which is accommodated in a housing of an electric power tool and mounted to the housing so as to be capable of relative movement, and a load sensor which is provided in the switch main body portion and capable of outputting an electric signal in proportion to the amount of distortion caused by a pressing force. The switch operating portion is mounted on the surface of the housing so as to be capable of relative displacement with respect to the housing and transmits a pressing force applied to the switch operating portion to the load sensor, with the maximum displacement amount of the switch operating portion being set to equal to or less than 5 mm.
Abstract:
A rebar tying tool (2; 302; 402) include a feed mechanism (24), which includes a first motor (32; 304) and feeds a wire (W), and a twisting mechanism, which includes a second motor (76; 306) and twists together one or more portions of the wire. A control unit (202; 350) controls the first motor and the second motor and includes a general-purpose I/O port (202c; 350c) and a motor-control-signal output port (202a; 350a). A motor-control-signal output-destination-switching circuit (204; 310; 406) inputs motor-control signals (UH, VH, WH, UL, VL, WL) from the control unit via the motor-control-signal output port and selectively outputs the inputted motor-control signals to either the first motor or the second motor in response to input of a switching signal (SW).
Abstract:
An electric working machine includes a molded member, a motor, a control circuit, and an electric circuit. The molded member includes an insulating material and is molded in one piece. The control circuit is configured to control the motor. The electric circuit is coupled to the control circuit. The electric circuit includes a surface circuit that is integrally arranged on a surface of the molded member.