Abstract:
A method and apparatus provide two-dimensional to three-dimensional image conversion. The apparatus can include an input configured to receive a first image. The apparatus can include a controller configured to segment the first image into a plurality of regions, configured to perform a Fast Fourier Transform on at least one of the regions, and configured to determine a relative horizontal displacement distance between a first frame and a second frame of at least one region based on performing the Fast Fourier Transform.
Abstract:
A method and apparatus provide two-dimensional to three-dimensional image conversion. The apparatus can include an input configured to receive a first image. The apparatus can include a controller configured to segment the first image into a plurality of regions, configured to perform a Fast Fourier Transform on at least one of the regions, and configured to determine a relative horizontal displacement distance between a first frame and a second frame of at least one region based on performing the Fast Fourier Transform.
Abstract:
An infrared sensing strip includes a substantially linear substrate board, a receiver diode, and a plurality of light emitting diodes (LEDs) linearly aligned along the linear substrate board. Each of the LEDs is operative to transmit in a different direction. The infrared sensing strip utilizes prismatic films arranged to refract light from each of the LEDs in different directions. In one embodiment, the receiver diode is positioned centrally on the linear substrate board, and includes at least four LEDs, with two of each being disposed on either side of the receiver diode. Four prismatic films each cover a respective one of the LEDs and are arranged to refract light from each respective LED in one of four different directions. The small scale of the infrared sensing strip enables various applications including a scroll control, volume control, a heart rate monitor and various transmit and receive features.
Abstract:
A display system includes a display and a control circuit operable with the display. The display is configured to provide visual output having a presentation orientation. When user input is received, the control circuit can alter the presentation orientation from an initial orientation in response to user input. When non-user events or device events are detected, the control circuit can revert the presentation orientation to the initial orientation in response to the non-user event or device event. Where the presentation orientation has a user input configuration associated therewith, the user input configuration can either be altered with the presentation orientation or retained in an initial disposition.