摘要:
A wideband receiver system is provided to concurrently receive multiple RF channels including a number of desired channels that are located in non-contiguous portions of a radio frequency spectrum and to group the number of desired channels into a contiguous frequency band. The system includes a wideband receiver having a complex mixer for down-shifting the multiple RF channels and transforming them to an in-phase signal and a quadrature signal in the baseband. The system further includes a wideband analog-to-digital converter module that digitizes the in-phase and quadrature signals and a digital frontend module that transforms the digital in-phase and quadrature signals to baseband signals that contains only the number of desired RF channels. that are now located in a contiguous frequency band. An up-converter module up-shifts the baseband signals to a contiguous band in an IF spectrum so that the system can directly interface with commercially available demodulators.
摘要:
A wideband receiver system is provided to concurrently receive multiple RF channels including a number of desired channels that are located in non-contiguous portions of a radio frequency spectrum and to group the number of desired channels into a contiguous frequency band. The system includes a wideband receiver having a complex mixer for down-shifting the multiple RF channels and transforming them to an in-phase signal and a quadrature signal in the baseband. The system further includes a wideband analog-to-digital converter module that digitizes the in-phase and quadrature signals and a digital frontend module that transforms the digital in-phase and quadrature signals to baseband signals that contains only the number of desired RF channels. that are now located in a contiguous frequency band. An up-converter module up-shifts the baseband signals to a contiguous band in an IF spectrum so that the system can directly interface with commercially available demodulators.
摘要:
A direct broadcast satellite (DBS) reception assembly may comprise an integrated circuit that is configurable between or among a plurality of configurations based on content requested by client devices served by the DBS reception assembly. In a first configuration, multiple satellite frequency bands may be digitized by the integrated circuit as a single wideband signal. In a second configuration, the satellite frequency bands may be digitized by the integrated circuit as a plurality of separate narrowband signals. The integrated circuit may comprise a plurality of receive paths, each of the receive chains comprising a respective one of a plurality of low noise amplifiers and a plurality of analog-to-digital converters.
摘要:
A receiver may receive a signal and process each of a plurality of sub-bands of the received signal via a respective one of a plurality of first-type receive chains. The receiver may utilize a signal output by a first one of the plurality of the first-type receive chains to remove undesired signals from a signal output by a second one of the plurality of the first-type receive chains. The undesired signals may comprise aliases and/or harmonics of one or more signals that fall within a sub-band of the first one of the plurality of the first-type receive chains. The receiver may downconvert, filter, and digitize each of the plurality of sub-bands via a corresponding one of the plurality of the first type receive chains. The received signal may encompass the cable television band, and each of the plurality of sub-bands may comprise a plurality of cable television channels.
摘要:
An automatic gain control loop disposed in a receiver is adapted to compensate for varying levels of out of band interference sources by adaptively controlling the gain distribution throughout the receive signal path. One or more intermediate received signal strength indicator (RSSI) detectors are used to determine a corresponding intermediate signal level. The output of each RSSI detector is coupled to an associated comparator that compares the intermediate RSSI value against a corresponding threshold. The take over point (TOP) for gain stages is adjusted based in part on the comparator output values. The TOP for each of a plurality of gain stages may be adjusted in discrete steps or continuously.
摘要:
A radio integrated circuit includes, in part, an analog front end block, an analog-to-digital converter responsive to the analog-front end block, a digital signal processor responsive to the analog-to-digital converter and adapted to generate in-phase and quadrature signals, and a serial communication interface configured to receive and transmit the in-phase and quadrature signals. The serial communication interface supplies a gain control signal to the analog front end block when a switch disposed in the radio integrated circuit is in a first position. When the switch is in a second position, a gain control block disposed in the radio integrated circuit receives a gain control signal from the analog-to-digital converter and supplies the gain control signal to the analog front end block. The digital signal processor may be configured to interleave the in-phase and quadrature signals.
摘要:
An automatic gain control loop disposed in a receiver is adapted to compensate for varying levels of out of band interference sources by adaptively controlling the gain distribution throughout the receive signal path. One or more intermediate received signal strength indicator (RSSI) detectors are used to determine a corresponding intermediate signal level. The output of each RSSI detector is coupled to an associated comparator that compares the intermediate RSSI value against a corresponding threshold. The take over point (TOP) for gain stages is adjusted based in part on the comparator output values. The TOP for each of a plurality of gain stages may be adjusted in discrete steps or continuously.
摘要:
A radio integrated circuit includes, in part, an analog front end block, an analog-to-digital converter responsive to the analog-front end block, a digital signal processor responsive to the analog-to-digital converter and adapted to generate in-phase and quadrature signals, and a serial communication interface configured to receive and transmit the in-phase and quadrature signals. The serial communication interface supplies a gain control signal to the analog front end block when a switch disposed in the radio integrated circuit is in a first position. When the switch is in a second position, a gain control block disposed in the radio integrated circuit receives a gain control signal from the analog-to-digital converter and supplies the gain control signal to the analog front end block. The digital signal processor may be configured to interleave the in-phase and quadrature signals.
摘要:
A receiver may receive a signal and process each of a plurality of sub-bands of the received signal via a respective one of a plurality of first-type receive chains. The receiver may utilize a signal output by a first one of the plurality of the first-type receive chains to remove undesired signals from a signal output by a second one of the plurality of the first-type receive chains. The undesired signals may comprise aliases and/or harmonics of one or more signals that fall within a sub-band of the first one of the plurality of the first-type receive chains. The receiver may downconvert, filter, and digitize each of the plurality of sub-bands via a corresponding one of the plurality of the first type receive chains. The received signal may encompass the cable television band, and each of the plurality of sub-bands may comprise a plurality of cable television channels.
摘要:
A cable modem (CM) device captures signals over a wide spectrum including one or more cable frequency bands and sub-bands, and extracts one or more cable channels from the captured signals. The CM device is operable to analyze the extracted one or more cable channels and assigns a portion of the extracted one or more cable channels for upstream and/or downstream communication based on the analysis. The CM device may recapture one or more previously unused cable channels to be utilized for the upstream and/or downstream communication based on the analysis. The CM device may determine noise, interference and/or blocker information corresponding to the extracted one or more cable channels based on the analysis. Based on the determined noise, interference and/or blocker information, the cable modem termination system (CMTS) may assign or block usage of one or more cable channels for the upstream and/or downstream communication.