摘要:
Provided is a method of manufacturing an organic light emitting device including the step of forming an electron injection layer. The step of forming the electron injection layer includes the steps of: vaporizing in a container a dopant material as a raw material of a dopant; causing the vaporized dopant material to pass a heated medium between the container and the substrate; and forming the organic compound into the electron injection layer. According to the method the organic light emitting device which has high electron injection efficiency and can be driven at a low voltage can be obtained.
摘要:
A vacuum deposition apparatus capable of enhancing the productivity of an organic electroluminescence device is realized. A first pipe is connected to a deposition source for evaporating an organic electroluminescence material, and two second pipes are directed to two film deposition objects comprised of substrates and masks, whereby an organic deposition film is formed. Vapor is released simultaneously from the deposition source to plural film deposition objects on different planes to deposit films, which promotes the reduction in film deposition time and the miniaturization of an apparatus.
摘要:
A vacuum deposition apparatus capable of enhancing the productivity of an organic electroluminescence device is realized. A first pipe is connected to a deposition source for evaporating an organic electroluminescence material, and two second pipes are directed to two film deposition objects comprised of substrates and masks, whereby an organic deposition film is formed. Vapor is released simultaneously from the deposition source to plural film deposition objects on different planes to deposit films, which promotes the reduction in film deposition time and the miniaturization of an apparatus.
摘要:
There is provided a device or a method including a flow path switching unit which switches a first flow path for releasing the vapor deposition material evaporated from a vapor depositing source from the same into a chamber, and a second flow path for causing the vapor deposition material evaporated from the vapor depositing source to flow from the vapor depositing source through a transfer path into a recovery container. The vapor deposition system or the vapor deposition method is capable of reducing an amount of a vapor deposition material consumed without being deposited on an object not to be processed during non-vapor deposition.
摘要:
There is provided a device or a method including a flow path switching unit which switches a first flow path for releasing the vapor deposition material evaporated from a vapor depositing source from the same into a chamber, and a second flow path for causing the vapor deposition material evaporated from the vapor depositing source to flow from the vapor depositing source through a transfer path into a recovery container. The vapor deposition system or the vapor deposition method is capable of reducing an amount of a vapor deposition material consumed without being deposited on an object not to be processed during non-vapor deposition.
摘要:
A film formation apparatus includes a film formation source, a quartz oscillator for measurement, and a quartz oscillator for calibration. When a thin film is formed on an object, a film forming material is heated in the source to release vapors thereof. The quartz oscillator for measurement measures the amount of the film forming material formed on the object, while the quartz oscillator for calibration calibrates the quartz oscillator for measurement. A moving part for moving the film formation source between a predetermined film formation waiting position and a predetermined film forming position with respect to the film formation object is further provided, the moving part holds the quartz oscillator for measurement so that its relative position with respect to the film formation source is maintained, and the quartz oscillator for calibration is provided above the moving part when the moving part is at the film formation waiting position.
摘要:
A method of carrying out alignment between a substrate and a mask, each having respective alignment marks. Vibrations attic substrate in a direction of gravity are measured. An antiphase vibrational wave is calculated, based an data corresponding to the measured vibrations. The antiphase vibrational wave is applied to the substrate, thereby reducing the vibrations or the substrate. When the vibrations of the substrate in the direction of gravity fall within a predetermined value that is set in advance, images are taken of relative positions of the alignment marks provided on the substrate and the mask, respectively, from the substrate side, and corresponding data is produced. Based on the data corresponding to the obtained images, an amount of movement of one of the substrate and the mask is calculated in a horizontal direction. One of the substrate and the mask is moved, based on the calculated movement amount.
摘要:
Provided is a vacuum vapor deposition system including: a vapor depositing source; a film thickness sensor for monitoring; and a film thickness sensor for calibration, in which a distance L1 from a center of an opening of the vapor depositing source to the film thickness sensor for calibration and a distance L2 from the center to the film thickness sensor for monitoring satisfy a relationship of L1≦L2, and angle θ1 formed by a perpendicular line from the center of the opening of the vapor deposition source to a film formation surface of the substrate and a straight line connecting the center of the opening of the vapor depositing source to the film thickness sensor for calibration, and angle θ2 formed by the perpendicular line and a straight line connecting the center of the opening of the vapor depositing source to the film thickness sensor for monitoring satisfy a relationship of θ1≦θ2.
摘要:
Provided is a vacuum vapor deposition system, which enables a vapor deposition rate to be measured accurately and a film thickness to be controlled with higher accuracy. The vacuum vapor deposition system includes: a vacuum chamber; a substrate holding mechanism; a vapor depositing source; a film thickness sensor for monitoring; a control system including a temperature controller and a film thickness controller; and a film thickness sensor for calibration, in which a distance from one film thickness sensor whose measurement accuracy is to be enhanced, out of the film thickness sensor for monitoring and the film thickness sensor for calibration, to a center of the opening of the vapor depositing source, is smaller than a distance from another film thickness sensor to the center of the opening of the vapor depositing source.
摘要:
A film formation apparatus includes a film formation source, a quartz oscillator for measurement, and a quartz oscillator for calibration. When a thin film of a film forming material is formed on a film formation object, the film forming material is heated in the film formation source to release vapors thereof. The quartz oscillator for measurement measures the amount of the film forming material formed on the film formation object, while the quartz oscillator for calibration calibrates the quartz oscillator for measurement. In the film formation apparatus, there are further provided a moving part for moving the film formation source between a predetermined film formation waiting position and a predetermined film forming position with respect to the film formation object and a temperature control part for controlling a temperature of the quartz oscillator for measurement and a temperature of the quartz oscillator for calibration to be substantially the same.