摘要:
A method for manufacturing a semiconductor device includes forming a first gate electrode on a semiconductor substrate in a first transistor region; forming a channel dose region; and forming a first source extension region, wherein the channel dose region is formed by using a first mask as a mask and by ion-implanting a first dopant of the first conductivity type, and the first mask covering a drain side of the first gate electrode and covering a drain region, and the first source extension region is formed by using a second mask and the gate electrode as masks and by ion-implanting a second dopant of a second conductivity type that is a conductivity type opposite to the first conductivity type, the second mask covering the drain side of the first gate electrode and covering the drain region.
摘要:
A p-channel MOS transistor includes a gate electrode formed on a silicon substrate via a gate insulating film, a channel region formed below the gate electrode within the silicon substrate, and a p-type source region and a p-type drain region formed at opposite sides of the channel region within the silicon substrate. In the p-channel MOS transistor, first and second sidewall insulating films are arranged on opposing sidewall faces of the gate electrode. First and second p-type epitaxial regions are respectively formed at outer sides of the first and second sidewall insulating films on the silicon substrate, and the first and second p-type epitaxial regions are arranged to be higher than the gate electrode. A stress film that stores tensile stress and covers the gate electrode via the first and second sidewall insulating films is continuously arranged over the first and second p-type epitaxial regions.
摘要:
A semiconductor device manufacturing method includes forming a channel dope layer having a first electric conductive-type inside of a semiconductor substrate, the channel dope layer being formed in a region except for a drain impurity region where dopant impurities for forming a low-concentration drain region are introduced, and the channel dope layer being separated from the drain impurity region; forming a gate electrode on the semiconductor substrate via a gate insulating film; and forming a low-concentration source region inside of the semiconductor substrate on a first side of the gate electrode, and forming a low-concentration drain region in the drain impurity region of the semiconductor substrate on a second side of the gate electrode, by introducing second electric conductive dopant impurities inside of the semiconductor substrate with the gate electrode as a mask.
摘要:
A method for manufacturing a semiconductor device includes forming a first gate electrode on a semiconductor substrate in a first transistor region; forming a channel dose region; and forming a first source extension region, wherein the channel dose region is formed by using a first mask as a mask and by ion-implanting a first dopant of the first conductivity type, and the first mask covering a drain side of the first gate electrode and covering a drain region, and the first source extension region is formed by using a second mask and the gate electrode as masks and by ion-implanting a second dopant of a second conductivity type that is a conductivity type opposite to the first conductivity type, the second mask covering the drain side of the first gate electrode and covering the drain region.
摘要:
To solve the problem, a MISFET covered with an insulating film which generates stress is provided. The MISFET including a gate insulating film; a gate electrode disposed on the gate insulating film, the gate electrode including a polysilicon portion and a silicide portion; and a source/drain disposed adjacent to the gate electrode, in which the ratio between the polysilicon portion and the silicide portion is determined depending on a strain for enhancing the driving capability of the MISFET, the strain being generated on the basis of the stress through the gate electrode in a channel region of the MISFET.
摘要:
In a MOS-type semiconductor device in which, on a Si substrate (201), a SiGe layer (202) having a valence band edge energy value smaller than a valence band edge energy value of the first semiconductor layer and a mobility larger than a mobility of the first semiconductor layer, a Si cap layer (203), and an insulating layer (204) are sequentially laminated, the problem of the shift of the absolute value of the threshold voltage toward a smaller value caused by negative fixed charges formed in or near the interface between the Si cap layer (203) and the insulting film (204) by diffusion of Ge is overcome by neutralizing the negative fixed charges by positive charges induced in and near the interface between the Si cap layer and the insulating film along with addition of nitrogen atoms to the semiconductor device surface by NO gas annealing and thereby shifting the threshold voltage toward a larger value.
摘要:
In a p-type MOS transistor, a gate electrode is partially removed by a predetermined wet etching, so that an upper portion of the gate electrode is formed to be lower than an upper portion of a sidewall insulation film. As a result of such a constitution, in spite of formation of a tensile stress (TSEL) film leading to deterioration of characteristics of a p-type MOS transistor by nature, stresses applied from the TESL film to the gate electrode and the sidewall insulation film are dispersed as indicated by broken arrows in the drawing, and consequently, a compressive stress is applied to a channel region, so that a compressive strain is introduced. As stated above, in the p-type MOS transistor, in spite of formation of the TESL film, in reality, a strain to improve characteristics of the p-type MOS transistor is given to the channel region.
摘要:
A p-channel MOS transistor includes a gate electrode formed on a silicon substrate via a gate insulating film, a channel region formed below the gate electrode within the silicon substrate, and a p-type source region and a p-type drain region formed at opposite sides of the channel region within the silicon substrate. In the p-channel MOS transistor, first and second sidewall insulating films are arranged on opposing sidewall faces of the gate electrode. First and second p-type epitaxial regions are respectively formed at outer sides of the first and second sidewall insulating films on the silicon substrate, and the first and second p-type epitaxial regions are arranged to be higher than the gate electrode. A stress film that stores tensile stress and covers the gate electrode via the first and second sidewall insulating films is continuously arranged over the first and second p-type epitaxial regions.