Abstract:
In some examples, the disclosure describes an implantable medical device comprising a plurality of electrodes, sensing circuitry configured to sense a physiological electrical signal via the plurality of electrodes, and communication circuitry configured to transmit and/or receive a transconductance communication signal via the plurality of electrodes, wherein at least one electrode of the plurality of electrodes comprises a lower-capacitance portion and a higher-capacitance portion.
Abstract:
Systems, apparatus and methods for extension of longevity of implantable medical devices (IMDs) are provided. An apparatus includes a battery, a first communication component configured to provide a first communication type and to be powered by the battery, a second communication component configured to provide a second communication type, and a processor configured to switch on the first communication component or the second communication component to perform communication based, at least, on a defined condition being satisfied. In one embodiment, the first component is a radio frequency (RF) component and the second component is a component that requires less battery power than the RF component. The second component can include a component configured to perform communication based on inductive coupling or based on tissue conductance communication.
Abstract:
An external power source, implantable medical device, and method for indicating an extent of power transfer between an external coil to an internal coil associated with the implantable medical device. According to one aspect, a method includes determining a parameter that depends on an extent to which the external coil is aligned with the internal coil, where the parameter includes at least one of an indication of an internal coil output power and power transfer efficiency and a resonant frequency of the external coil when inductively coupled to the internal coil. The method further includes indicating an extent to which the external coil is aligned with the internal coil based on the parameter.
Abstract:
This disclosure is related to devices, systems, and techniques for performing patient parameter measurements. In some examples, a medical device system includes an optical sensor configured to measure ambient light and a tissue oxygen saturation parameter and processing circuitry configured to determine that a current measurement of the tissue oxygen saturation parameter is prompted and control the optical sensor to perform an ambient light measurement associated with the current measurement of the tissue oxygen saturation parameter. The processing circuitry is further configured to determine, based on the ambient light measurement, at least one of whether to control the optical sensor to perform the current measurement of the tissue oxygen saturation parameter, when to control the optical sensor to perform the current measurement of the tissue oxygen saturation parameter, or whether to include the current measurement of the tissue oxygen saturation parameter in a trend of the tissue oxygen saturation parameter.
Abstract:
A medical implant information reporting device and method of charging the same, the reporting device having an integrated harvesting coil configured to couple energy from an electromagnetic field of a source coil to induce current in the harvesting coil, are provided. According to one aspect, a method includes electrically coupling the harvesting coil to the source coil to charge the medical implant information reporting device, the source coil being sized to be removably disposed one of on and around the torso of a patient and configured to inductively power a medical implant about which the medical implant information reporting device reports.
Abstract:
A rechargeable cell of an implantable medical device is recharged by an external charging unit that includes a transmitting coil configured to emit an electromagnetic field and a near-field focusing plate having a subwavelength structure pattern that focuses the emitted electromagnetic field to a focal pattern. The implantable medical device includes a housing having a window of an electromagnetically transparent material and a receiving coil enclosed by the housing. The receiving coil extends adjacent to and is aligned with the window. The rechargeable cell is enclosed by the housing and is configured to be charged by current induced in the receiving coil when the receiving coil is exposed to the focal pattern. In some examples, the near-field focusing plate is configured to produce the focal pattern to have a size that is less than an outer dimension of the window and a focal length from the near-field focusing plate that at least reaches the window.
Abstract:
This disclosure provides an extravascular ICD system and method for defibrillating a heart of a patient. The extravascular ICD system includes multiple extravascular electrical stimulation leads or lead segments located in close proximity to one another and having respective defibrillation electrodes. The ICD system utilizes the multiple defibrillation electrodes to form an extravascular electrode vector that may result a reduction in the shock impedance and/or a reduction in the DFT compared to extravascular ICD systems that include only a single extravascular defibrillation electrode. An ICD of the system may, for example, deliver a defibrillation shock using an electrode vector in which a first polarity of the electrode vector is formed by electrically coupling first and second defibrillation electrodes of first and second leads, respectively, to the therapy circuitry and a second polarity of the electrode vector is formed by electrically coupling a housing of the ICD to the therapy circuitry.
Abstract:
An implantable cardioverter defibrillator (ICD) configured to transmit a tissue conduction communication (TCC) signal includes a TCC transmitter module configured to generate the TCC signal and transmit the TCC signal via a plurality of electrodes. The TCC signal comprises a biphasic signal having an amplitude and a frequency, wherein at least one of the amplitude and the frequency are configured to avoid stimulation of tissue of the patient. The TCC transmitter module comprises protection circuitry coupled between a current source and the plurality of electrodes, wherein the protection circuitry is configured to protect the signal generator from an external anti-tachyarrhythmia shock delivered to the patient.
Abstract:
A medical device system is configured to sense a physiological signal by a first device and generate a control signal by the first device in response to the physiological signal. An acoustical emitting device is controlled by the first device to emit an acoustical trigger signal in response to the control signal. A second device detects the acoustical trigger signal and delivers an automatic therapy to a patient in response to detecting the acoustical trigger signal.
Abstract:
A method and medical device for detecting signals that detects emitted light scattered by a volume of tissue delivered along a first pathway at a plurality of wavelengths to generate corresponding first detected light intensity output signals, detects emitted light scattered by the volume of tissue delivered along a second pathway different from the first pathway at a plurality of wavelengths to generate corresponding second detected light intensity output signals, determines whether a difference between the emitted light detected along the first pathway and the emitted light detected along the second pathway is greater than a predetermined threshold, and alters sensing by the device in response to the determining whether a difference is greater than the predetermined threshold.