Abstract:
An integrated valve prosthesis includes an anchor stent, a tether component, and a valve component. The anchor stent includes a self-expanding tubular frame member configured to be deployed in the annulus of an aortic valve or the aorta. The valve component includes a valve frame and a prosthetic valve coupled to the valve frame, and is configured to be deployed within the anchor stent. The tether component includes a first end coupled to the anchor stent and a second end coupled to the valve frame. In the delivery configuration, the tether component extends in a first direction from the anchor stent to the valve component, and in the deployed configuration, the tether component extends in a second direction from the anchor stent to the valve component. The second direction is generally opposite the first direction. The tether component may set the location of the valve component relative to the anchor stent.
Abstract:
A medical device loading system can comprise a first housing, a second housing, and a plate. The first housing comprises a first open end, a first tapered inner surface, and a second open end. The second housing comprises a third open end, a second tapered inner surface, and a fourth open end. The second housing can define a slot between the second tapered surface and the third open end. The plate can be configured to be slidably received within the slot. The loading system can further comprise a first elongated member and a second elongated member.
Abstract:
An integrated valve prosthesis includes an anchor stent, a tether component, and a valve component. The anchor stent includes a self-expanding tubular frame member configured to be deployed in the annulus of an aortic valve or the aorta. The valve component includes a valve frame and a prosthetic valve coupled to the valve frame, and is configured to be deployed within the anchor stent. The tether component includes a first end coupled to the anchor stent and a second end coupled to the valve frame. In the delivery configuration, the tether component extends in a first direction from the anchor stent to the valve component, and in the deployed configuration, the tether component extends in a second direction from the anchor stent to the valve component. The second direction is generally opposite the first direction. The tether component may set the location of the valve component relative to the anchor stent.
Abstract:
An integrated valve prosthesis includes an anchor stent, a tether component, and a valve component. The anchor stent includes a self-expanding tubular frame member configured to be deployed in the annulus of an aortic valve or the aorta. The valve component includes a valve frame and a prosthetic valve coupled to the valve frame, and is configured to be deployed within the anchor stent. The tether component includes a first end coupled to the anchor stent and a second end coupled to the valve frame. In the delivery configuration, the tether component extends in a first direction from the anchor stent to the valve component, and in the deployed configuration, the tether component extends in a second direction from the anchor stent to the valve component. The second direction is generally opposite the first direction. The tether component may set the location of the valve component relative to the anchor stent.
Abstract:
An integrated valve prosthesis includes an anchor stent, a tether component, and a valve component. The anchor stent includes a self-expanding tubular frame member configured to be deployed in the annulus of an aortic valve or the aorta. The valve component includes a valve frame and a prosthetic valve coupled to the valve frame, and is configured to be deployed within the anchor stent. The tether component includes a first end coupled to the anchor stent and a second end coupled to the valve frame. In the delivery configuration, the tether component extends in a first direction from the anchor stent to the valve component, and in the deployed configuration, the tether component extends in a second direction from the anchor stent to the valve component. The second direction is generally opposite the first direction. The tether component may set the location of the valve component relative to the anchor stent.
Abstract:
A prosthesis includes a tubular graft, a prosthetic valve component, an inflow stent, an outflow stent, and a plurality of body stents disposed between the inflow and outflow stents. Each stent is a sinusoidal patterned radially-expandable ring having a first set of crowns and a second set of crowns, with the first set of crowns disposed closer to an inflow end of the tubular graft than the second set of crowns. The prosthesis is configured to be resistant to backfolding and/or buckling during deployment thereof.
Abstract:
An integrated valve prosthesis includes an anchor stent, a tether component, and a valve component. The anchor stent includes a self-expanding tubular frame member configured to be deployed in the annulus of an aortic valve or the aorta. The valve component includes a valve frame and a prosthetic valve coupled to the valve frame, and is configured to be deployed within the anchor stent. The tether component includes a first end coupled to the anchor stent and a second end coupled to the valve frame. In the delivery configuration, the tether component extends in a first direction from the anchor stent to the valve component, and in the deployed configuration, the tether component extends in a second direction from the anchor stent to the valve component. The second direction is generally opposite the first direction. The tether component may set the location of the valve component relative to the anchor stent.
Abstract:
A medical device loading system can comprise a first housing, a second housing, and a plate. The first housing comprises a first open end, a first tapered inner surface, and a second open end. The second housing comprises a third open end, a second tapered inner surface, and a fourth open end. The second housing can define a slot between the second tapered surface and the third open end. The plate can be configured to be slidably received within the slot. The loading system can further comprise a first elongated member and a second elongated member.