Abstract:
This disclosure describes various examples of multi-purpose tools and associated methods for safely gaining access to extravascular spaces. The multi-purpose tools described herein are particularly suited for safely gaining access to the sub-sternal space underneath the sternum/ribcage as well as tunneling subcutaneously above the ribcage for the purpose of positioning of a medical electrical lead. This eliminates the need for separate tools for tunneling in different extravascular spaces by providing a single tool capable of the multiple uses.
Abstract:
A catheter proximal section is preferably formed from a relatively soft part and a relatively rigid part, and includes a proximal terminal end that defines a perimeter of an opening into a lumen of the catheter. The proximal section may further include a feature for interlocking engagement with an accessory tool. An inner surface of each of the relatively soft and rigid parts may be located opposite one another, on either side of the catheter lumen. The relatively soft and rigid parts may be included in a sealing assembly that further includes an attachment feature for removable connection of the assembly to the proximal section catheter.
Abstract:
A catheter has a shaft that defines a delivery lumen, for example, to deliver an elongate medical device therethrough; a proximal section of the catheter includes a seal zone portion, a handle portion and a proximal port portion. A relatively thin wall section of the proximal port portion extends between the seal zone portion and a proximal edge that defines part of a perimeter of a proximal opening of the delivery lumen. The handle portion projects laterally from the seal zone portion, generally opposite the relatively thin wall section. An inflation subassembly of the catheter includes a compliant sleeve member and an inflation lumen extending from the sleeve member, proximally along the shaft, and into a connector port formed in the handle portion. The inflation lumen may be formed by fusing a section of a tube to the shaft and molding the handle portion around another section of the tube.
Abstract:
This disclosure provides tools and implant techniques utilizing such tools to gain access to and implant a medical device, such as a medical electrical lead, within extravascular spaces. In one example, this disclosure provides a tool for creating a sub-sternal tunnel in a patient. The tool comprises a relatively straight guide member extending from a first end thereof to a second end thereof, a tunneling member extending from a first end thereof to a tip thereof, the tunneling member extending alongside and coplanar with the guide member, the first end of the tunneling member and the first end of the guide member being joined together, and a handle coupled to the guide member.
Abstract:
This disclosure provides various embodiments of implant tools and implant techniques utilizing those tools to implant components within extravascular locations. In one example, an implant tool for implanting a component within an extravascular location of a patient comprise a handle and a shaft adjacent the handle. The shaft has a proximal end, a distal end, and a body formed to define an open channel that extends from near the proximal end to the distal end. The open channel has a first width. The body has at least one flexible portion that defines an opening via which the open channel is accessed. The opening has a second width that is less than the first width. In another example, a sheath with an opening having the second width may be placed on the shaft of the implant tool instead of the implant tool having the at least one flexible portion.
Abstract:
Extravascular implant tools that utilize a bore-in mechanism to safely access extravascular locations and implant techniques utilizing these tools are described. The bore-in mechanism may include a handle and a helix extending from the handle. The bore-in mechanism is used, for example, in conjunction with a tunneling tool to traverse the diaphragmatic attachments to access a substernal location. The tunneling tool may be an open channel tunneling tool or a conventional tunneling tool (e.g., metal rod).
Abstract:
A medical delivery device for delivering a medical device includes a navigable elongated member, a deployment bay, and a compression mechanism. The deployment bay may be configured to house the medical device as the medical device is navigated to the target site. The deployment bay may be at a distal end of the delivery device and may include a distal opening through which the medical device may be deployed. The compression mechanism is configured to longitudinally compress in response to a predetermined force such that the elongated member and deployment bay are relatively closer together along a longitudinal axis of the delivery device.
Abstract:
This disclosure describes various tools and associated methods suitable for gaining access to extravascular spaces. The various tools and associated methods utilize a boring tip that may rotate to aid in safely and effectively crossing diaphragmatic attachments. The boring tip may, in some instances not have any sharp edge. For example, the boring tip may have a dome shape but including at least one surface recessed and offset from a summit of the dome shape. Various mechanisms may be used to control rotation of the boring tip as described herein.
Abstract:
This disclosure describes various tools and associated methods suitable for gaining access to extravascular spaces. The various tools and associated methods utilize a boring tip that may rotate to aid in safely and effectively crossing diaphragmatic attachments. The boring tip may, in some instances not have any sharp edge. For example, the boring tip may have a dome shape but including at least one surface recessed and offset from a summit of the dome shape. Various mechanisms may be used to control rotation of the boring tip as described herein.