Abstract:
A navigation system provides road guidance by displaying information relating to roads on a structure shape map, together with landmark information, in such a manner that only information around the present position is highlighted. The system retrieves road information in the direction of travel from the present position according to the vehicle speed, or road information within a predetermined angular or distance range in the direction of travel. Information relating to roads includes information indicating a one-way road, information indicating a road into which entry is prohibited, and information indicating a pedestrian crossing and a railroad crossing. These items of information are displayed by using marks, and the landmark information is displayed by using landmarks, thereby displaying information necessary for travel in a readily perceivable manner according to the travel conditions. When the vehicle enters a parking lot in the middle of the guidance for a route to a destination, the system searches for a route from the parking lot to the destination and outputs the found route by using a structure-shape map. The parking lot in this case is one within a predetermined walking distance from the destination. If the parking lot is in close proximity of the destination, further guidance is not necessary and the guidance is terminated.
Abstract:
In a navigation system, user preferred road data is determined and stored during travel to supplement fixed road data such as map data, intersection data, node data, and destination data stored in CD-ROM for subsequent use in providing route guidance in accordance with user road preferences. The user preferred road data is the data of actual trips, and the preference of the user is reflected in the user preferred road data. To determine user preferences, either the user preferred road data is compared to the fixed road data or a searched route calculated from the user preferred road data and CD-ROM data is compared with the searched route calculated from CD-ROM data. By using the determined user preferences in route searching, it is possible to provide more elaborate route searching and route guidance in accordance with the preference of the user.
Abstract:
A goal direction mark and a distance to a goal are indicated when the car has approached the end point of route. When the car has deviated from the guide route to the goal or is running backwards on the guide route, there is indicated a mark to inform the direction of progress to the goal on the guide route. When the car has deviated from the guide route and the guide route is not indicated on the map picture, there is indicated the direction to the goal or the direction to the guide route itself. When the start point of route is remote from the present position at the start of the guidance, a mark is indicated to inform the direction to the start point of route. The driver is enabled to easily determine relying upon the indicated mark in which direction he should proceed. When the map picture is scrolled, there is informed the goal direction, route direction or the direction of progress to the goal on the route. The user therefore is enabled to easily know the direction to the goal.
Abstract:
A navigation system calculates a route from a present position of a vehicle to a destination and provides guidance based on the calculated route. When the vehicle is within a given distance from a next approaching branch point requiring guidance, branch points existing within a given distance from next approaching branch point are determined and direction information for the branch points is acquired. The acquired direction information is compared with direction information at the next approaching branch point, and a common direction information is displayed based on the result of the comparison. Also, the navigation system according to the present invention detects a name of an interchange where the vehicle is to exit from the course and a distance to said interchange based on the present position of the vehicle in case the road where the vehicle is currently driven along is an expressway or a toll road. The navigation system according to the present invention calculates a route from the present position to the destination and properly calculates and provides guidance for the expected time of arrival at the destination as the vehicle moves.
Abstract:
A goal direction mark and a distance to a goal are indicated when the car has approached the end point of route. When the car has deviated from the guide route to the goal or is running backwards on the guide route in a direction that is opposite to the direction of the goal, there is indicated a mark to inform the direction of progress to the goal on the guide route. When the car has deviated from the guide route and the guide route is not indicated on the map picture, there is indicated the direction to the goal or the direction to the guide route itself. When the start point of route is remote from the present position at the start of the guidance, a mark is indicated to inform the direction to the start point of route. The driver is enabled to easily determine relying upon the indicated mark in which direction he should proceed. When the map picture is scrolled, there is informed the goal direction, route direction or the direction of progress to the goal on the route. The user therefore is enabled to easily know the direction to the goal.
Abstract:
Navigation data (26) are generated by performing course exploration up to a destination using path data (26), which include information relating to intersections and road information, in response to input of the destination. Course guidance to the destination is provided while present-position pursuit (37) is performed. Course guidance at an end-point of a present-position road is outputted using guidance information for travel to a destination at every intersection obtained from the road network data (26) by course exploration. At an intersection, a road in a direction of travel is recognized by the present-position pursuit means (37), present position on this road is kept track of and the end-point intersection of the road is recognized. Recognition of the travelling direction is performed at the end-point intersection of a road between intersections, and guidance to the next end-point intersection is outputted with the road in the travelling direction serving as a present-position road, whereby course guidance is performed repeatedly at every intersection up to the destination. In course exploration, a road in the direction of travel leading to the destination is set with regard to each intersection. Therefore, if an intersection and the road in the travelling direction thereof are recognized, it is possible to provide course guidance from the end-point intersection of the road in the travelling direction to the destination.
Abstract:
In a navigation system, during navigation between guidance intersections A and B, a next named intersection C is displayed along with the distance remaining until the named intersection B is reached. After the vehicle has entered the distance error correction range, illumination color of the display of the next named intersection C is changed into, for example, red. If a corresponding portion of the display screen is touched at the time of passage though the intersection, a distance error is corrected. The invention thus makes it possible to readily correct distance errors with accuracy. Even during navigation along a straight road, distance correction can be performed at specific intersections. The invention also makes it possible to track the present position with accuracy by increasing the frequency of distance error correction.
Abstract:
A navigation apparatus for navigating an automotive vehicle in accordance with a preset course while measuring distance travelled and steering angle is characterized by previously storing positions of charactering features along the course and guidance information relating to said characterizing features, correlating travelling distance and the positions of the characterizing features, and outputting guidance information relating to a particular characterizing feature on the condition that said characterizing feature has been approached. Guidance information relating to a particular characterizing feature is outputted when the vehicle has approached this characterizing feature. Thereof, by matching this guidance information with the circumstances along the course, the driver can verify during travel whether the course is correct or not. Accordingly, even if it is a long distance to the intersection at which the next turn is to be made, the driver is capable of verifying the course by the time this intersection is reached. this enables the driver to drive the vehicle without anxiety.
Abstract:
A navigation apparatus for navigating a vehicle in accordance with a preset course while measuring distance travelled and steering angle has voice track indication means in which voice track indications corresponding to the distance remaining to an intersection at which the next turn is to be made are outputted as the intersection is approached. When the distance from this intersection to the next intersection requiring a turn is less than a predetermined value, a voice track indication pointing out a lane into which the vehicle should be steered following the turn at the former intersection is outputted after the final voice track indication given just before the vehicle reaches this intersection. When it is required that a turn be made at the latter intersection immediately after the turn at the former intersection, the lane information for the turn at the latter intersection is outputted before the vehicle is turned at the former intersection. This makes it possible for the driver to steer the vehicle to the lane appropriate for the turn at the latter intersection while the vehicle is being turned at the former. Accordingly, in situations where it is required to make the turn at the latter intersection immediately after effecting the turn at the former, the driver can make the proper maneuvers smoothly and without haste.
Abstract:
The map data may be updated on a specified area basis. This may shorten the time for updating the map data as well as lowers the cost of map data update. A navigation system comprising a data center 51 for distributing map data about a designated area upon receipt of a data-distribution request; an on-board device 14 having a data storage that stores map data, for updating the map data about the designated area with new map data distributed from the data center; and wherein the map data distributed from the data center has a layered structure in which the map data in a lowest-layer represents the designated area while the map data in a higher-layer represents a wider area that includes a smaller area represented by a lower-layer map data.