Abstract:
A gate/source driving apparatus includes a first gate/source driving chip and a second gate/source driving chip. The first gate/source driving chip includes a plurality of first charge pump circuits, each of which has a voltage input end, a voltage output end, a first capacitor end, and a second capacitor end. The second gate/source driving chip includes a plurality of second charge pump circuits, each of which also has a voltage input end, a voltage output end, a first capacitor end, and a second capacitor end. The voltage output end of at least one of the first charge pump circuits is coupled to the voltage input end of at least one of the second charge pump circuits.
Abstract:
A method for mapping an input grayscale into an output luminance includes selecting a first reference grayscale, a first reference luminance, a second reference grayscale and a second reference luminance according to an input grayscale, generating a middle reference grayscale and a middle luminance, replacing a value of the first or second reference grayscale by a value of the middle reference grayscale, and replacing a value of the first or second reference luminance by a value of the middle luminance according to the middle reference grayscale and the input grayscale, and generating an output luminance by computing a linear transformation equation.
Abstract:
A gate driving apparatus is disclosed. The gate driving apparatus includes a first gate driving chip and N second gate driving chips, wherein N is positive integer. The first gate driving chip has a first input pin and a first current output pin. The first gate driving chip receives a reference electrical signal by the first input pin, and generates a reference current according to the reference electrical signal. The first current output pin is used for outputting the reference current. Each of the second gate driving chips has a current input pin for receiving the reference current and a second current output pin for outputting the reference current. The first gate driving chip and the second gate driving chips generate at least a first output signal and at least N second output signals according to the reference current.
Abstract:
A gate driving apparatus is disclosed. The gate driving apparatus includes a first gate driving chip and N second gate driving chips, wherein N is positive integer. The first gate driving chip has a first input pin and a first current output pin. The first gate driving chip receives a reference electrical signal by the first input pin, and generates a reference current according to the reference electrical signal. The first current output pin is used for outputting the reference current. Each of the second gate driving chips has a current input pin for receiving the reference current and a second current output pin for outputting the reference current. The first gate driving chip and the second gate driving chips generate at least a first output signal and at least N second output signals according to the reference current.
Abstract:
An operating method of an image sensing device capable of detecting several light emitting diodes each having a flickering cycle time, the image sensing device includes several pixel circuits, each of the several pixel circuits includes a first sensing circuit and a second sensing circuit, the operating method including the following operations: operating the image sensing device in a first operating mode, including: sensing light by the first sensing circuit with a first exposure time longer than the flickering cycle time, thereby obtaining a first sensing result; sensing light, simultaneously by the first sensing circuit and the second sensing circuit with a second exposure time shorter than the flickering cycle time, thereby obtaining a second sensing result and a third sensing result; determining whether there is LED (light emitting diode) flickering or not according to the first sensing result, the second sensing result and the third sensing result.
Abstract:
The present disclosure provides a non-overlap data transmission method for a liquid crystal display (LCD). The non-overlap data transmission method includes obtaining an entire fame image data; dividing the entire frame image data into a plurality of image data segments and individually sending the image data segments to a plurality of display processing units at the same time, wherein each of the image data segments is sent to one of the display processing units and image data of each image data segment does not overlap with image data of the other image data segments; and mutually sending image data of the image data segments through the display processing units.
Abstract:
A method for mapping an input grayscale into an output luminance includes selecting a first reference grayscale, a first reference luminance, a second reference grayscale and a second reference luminance according to an input grayscale, generating a middle reference grayscale and a middle luminance, replacing a value of the first or second reference grayscale by a value of the middle reference grayscale, and replacing a value of the first or second reference luminance by a value of the middle luminance according to the middle reference grayscale and the input grayscale, and generating an output luminance by computing a linear transformation equation.
Abstract:
The present disclosure provides a non-overlap data transmission method for a liquid crystal display (LCD). The non-overlap data transmission method includes obtaining an entire fame image data; dividing the entire frame image data into a plurality of image data segments and individually sending the image data segments to a plurality of display processing units at the same time, wherein each of the image data segments is sent to one of the display processing units and image data of each image data segment does not overlap with image data of the other image data segments; and mutually sending image data of the image data segments through the display processing units.
Abstract:
The present disclosure provides a non-overlap data transmission method for a liquid crystal display (LCD). The non-overlap data transmission method includes obtaining an entire fame image data; dividing the entire frame image data into a plurality of image data segments and individually sending the image data segments to a plurality of display processing units at the same time, wherein each of the image data segments is sent to one of the display processing units and image data of each image data segment does not overlap with image data of the other image data segments; and mutually sending image data of the image data segments through the display processing units.
Abstract:
A liquid crystal display (LCD) device includes: a data source, for generating a N-bit pixel data, N being a positive integer; a digital gamma correction unit, coupled to the data source, for performing digital gamma correction on the pixel data to generate a (N+M)-bit digital gamma correction pixel data, M being a positive integer; an image dithering unit, coupled to the digital gamma correction unit, for performing image dithering on the digital gamma correction pixel data to generate a (N+M−K)-bit dithering compensation pixel data, K being a positive integer; and a converter, coupled to the image dithering unit, for converting the dithering compensation pixel data into an output image. A bit number of the converter is lower than a bit number of the digital gamma correction unit.