Abstract:
The present application relates to a container inspection system, comprising a radiation source (31), a radiation detection apparatus and a quay crane for hoisting a container onto an automated guided vehicle, said radiation source (31) and said radiation detection apparatus being provided on said quay crane, for performing a scanning inspection on said container loaded on said vehicle. The present application, which does not need a special allocation of approach of the radiation source and the radiation detection apparatus, conveniently effectuates scanning inspection of a container, and improving the inspection efficiency.
Abstract:
This invention relates to a movable divided inspection system and method, wherein the scanning inspection system comprises a first radiation source, a first detection means, a first automated guided vehicle and a second automated guided vehicle. The first radiation source is mounted on the first automated guided vehicle. The first detection means is mounted on the second automated guided vehicle. The first automated guided vehicle and the second automated guided vehicle are able to drive the first radiation source and the first detection means to a preset scan inspection position, so as to form a scanning passage for passage of an article to be scanned between the first and second automated guided vehicle, such that scanning inspection of said article to be scanned is realized by relative movement of said article to be scanned with reference to said first automated guided vehicle and said second automated guided vehicle.
Abstract:
The present application relates to a container inspection system, comprising a radiation source (31), a radiation detection apparatus and a quay crane for hoisting a container onto an automated guided vehicle, said radiation source (31) and said radiation detection apparatus being provided on said quay crane, for performing a scanning inspection on said container loaded on said vehicle. The present application, which does not need a special allocation of approach of the radiation source and the radiation detection apparatus, conveniently effectuates scanning inspection of a container, and improving the inspection efficiency.
Abstract:
This invention relates to a movable divided inspection system and method, wherein the scanning inspection system comprises a first radiation source, a first detection means, a first automated guided vehicle and a second automated guided vehicle. The first radiation source is mounted on the first automated guided vehicle. The first detection means is mounted on the second automated guided vehicle. The first automated guided vehicle and the second automated guided vehicle are able to drive the first radiation source and the first detection means to a preset scan inspection position, so as to form a scanning passage for passage of an article to be scanned between the first and second automated guided vehicle, such that scanning inspection of said article to be scanned is realized by relative movement of said article to be scanned with reference to said first automated guided vehicle and said second automated guided vehicle.
Abstract:
A system and method for positioning radioactive material are provided. A scanning and imaging apparatus comprises a ray source configured to generate an X-ray and a detection device configured to receive an X-ray transmitted through an inspected object, wherein the ray source is configured to image the inspected object by emitting the X-ray to the inspected object. A radioactivity detector is configured to detect whether the inspected object comprises radioactive material synchronously with the process of scanning implemented by the scanning and imaging apparatus. In a case that the radioactive detector detects radioactive material, an actual position of the radioactive material in an X-ray image of the inspected object obtained by the scanning and imaging apparatus is marked in the image. The above solutions improve the accuracy of displaying the position of the radioactive source in the X-ray image. Further, inspection of radioactive material can be implemented while scanning an image. In this way, an error in the correspondence between inspection results of two systems when the two systems operate independently is avoided.
Abstract:
A scanning and imaging apparatus comprises a ray source configured to generate an X-ray and a detection device configured to receive an X-ray transmitted through an inspected object, wherein the ray source is configured to image the inspected object by emitting the X-ray to the inspected object. A radioactivity detector is configured to detect whether the inspected object comprises radioactive material synchronously with the process of scanning implemented by the scanning and imaging apparatus. In a case that the radioactivity detector detects radioactive material, an actual position of the radioactive material in an X-ray image of the inspected object obtained by the scanning and imaging apparatus is marked in the image. The above solutions improve the accuracy of displaying the position of the radioactive source in the X-ray image. Further, inspection of radioactive material can be implemented while scanning an image.
Abstract:
This invention relates to a movable article inspection system and inspection method, wherein the inspection system comprises: a first automated guided vehicle, a radiation source and a detection mechanism; said radiation source and said detection mechanism are both mounted on said first automated guided vehicle, said first automated guided vehicle is able to move to a preset scanning inspection position, such that scanning inspection of said article to be scanned is effectuated by means of relative movement between an article to be scanned and the first automated guided vehicle. Such movable inspection system based on an automated guided vehicle is capable of making full use of an existing automated guided vehicle and its control system to make a movement path of the inspection system more flexible, and capable of effectuating centralized control and management of the inspection system, so that it can improve inspection efficiency, and save labor cost.