Abstract:
A device is disclosed. The device includes a semiconductor substrate, a plurality of source lines formed on a surface of the semiconductor substrate. The plurality of source lines are laid in both X and Y directions. The device further includes a plurality of gate lines laid out over source lines in X direction in the plurality of source lines, a source contact line that connects source lines in the plurality of source lines that are terminating in Y direction, a gate contact line that connects the plurality of gate lines and a drain contact.
Abstract:
A semiconductor device and a method of making a semiconductor device. The device includes a semiconductor substrate having a first conductivity type, a layer of doped silicon located on the substrate, a trench extending into the layer of silicon, and a gate electrode and gate dielectric located in the trench. The device also includes a drain region, a body region having a second conductivity type located adjacent the trench and above the drain region, and a source region having the first conductivity type located adjacent the trench and above the body region. The layer of doped silicon in a region located beneath the body region includes donor ions and acceptor ions forming a net doping concentration within said region by compensation. The net doping concentration of the layer of doped silicon as a function of depth has a minimum in a region located immediately beneath the body region.
Abstract:
A semiconductor uses an isolation trench, and one or more additional trenches to those required for isolation are provided. These additional trenches can be connected between a transistor gate and the drain to provide additional gate-drain capacitance, or else they can be used to form series impedance coupled to the transistor gate. These measures can be used separately or in combination to reduce the switching speed and thereby reduce current spikes.
Abstract:
A trench-gate device with lateral RESURF pillars has an additional implant beneath the gate trench. The additional implant reduces the effective width of the semiconductor drift region between the RESURF pillars, and this provides additional gate shielding which improves the electrical characteristics of the device.
Abstract:
A trench-gate device with lateral RESURF pillars has an additional implant beneath the gate trench. The additional implant reduces the effective width of the semiconductor drift region between the RESURF pillars, and this provides additional gate shielding which improves the electrical characteristics of the device.
Abstract:
A trench-gate device with lateral RESURF pillars has an additional implant beneath the gate trench. The additional implant reduces the effective width of the semiconductor drift region between the RESURF pillars, and this provides additional gate shielding which improves the electrical characteristics of the device.