Abstract:
A semiconductor device is disclosed, a substrate structure; a raised source region; a raised drain region; a separation region disposed laterally between the raised source region and the raised drain region; a gate structure, disposed between the raised source region and the raised drain region and above a part of the separation region, the gate structure being spaced apart from the drain region and defining a drain extension region therebetween; a dummy gate structure in the drain extension region; an epitaxial layer, disposed above and in contact with the substrate structure and forming the raised source region, the raised drain region, and a raised region between the gate structure and the dummy gate structure, wherein the raised region between the gate structure and the dummy gate structure is relatively lightly doped to a conductivity of a second conductivity type which is opposite the first conductivity type.
Abstract:
Consistent with an example embodiment, a bipolar transistor comprises an emitter region vertically separated from a collector region in a substrate by a base region. The bipolar transistor further comprises a field plate electrically connected to the emitter region; the field plate extends from the emitter region along the base region into the collector region and the field plate is laterally electrically insulated from the base region and the collector region by a spacer. The spacer comprises an electrically isolating material that includes a silicon nitride layer and is vertically electrically isolated from the substrate by a further electrically isolating material.
Abstract:
Consistent with an example embodiment, a bipolar transistor comprises an emitter region vertically separated from a collector region in a substrate by a base region. The bipolar transistor further comprises a field plate electrically connected to the emitter region; the field plate extends from the emitter region along the base region into the collector region and the field plate is laterally electrically insulated from the base region and the collector region by a spacer. The spacer comprises an electrically isolating material that includes a silicon nitride layer and is vertically electrically isolated from the substrate by a further electrically isolating material.
Abstract:
A semiconductor device is disclosed, a substrate structure; a raised source region; a raised drain region; a separation region disposed laterally between the raised source region and the raised drain region; a gate structure, disposed between the raised source region and the raised drain region and above a part of the separation region, the gate structure being spaced apart from the drain region and defining a drain extension region therebetween; a dummy gate structure in the drain extension region; an epitaxial layer, disposed above and in contact with the substrate structure and forming the raised source region, the raised drain region, and a raised region between the gate structure and the dummy gate structure, wherein the raised region between the gate structure and the dummy gate structure is relatively lightly doped to a conductivity of a second conductivity type which is opposite the first conductivity type.