摘要:
A magnetoresistive sensing component includes a strip of horizontal magnetoresistive layer, a conductive part and a first magnetic-field-sensing layer. The strip of horizontal magnetoresistive layer is disposed above a surface of a substrate and has a first side and a second side opposite the first side along its extending direction. The conductive part is disposed above or below the horizontal magnetoresistive layer and electrically coupled to the horizontal magnetoresistive layer. The conductive part and the horizontal magnetoresistive layer together form at least an electrical current path. The first magnetic-field-sensing layer is not parallel to the surface of the substrate and magnetically coupled to the horizontal magnetoresistive layer at the first side of the horizontal magnetoresistive layer.
摘要:
A magnetoresistive sensing component includes a strip of horizontal magnetoresistive layer, a conductive part and a first magnetic-field-sensing layer. The strip of horizontal magnetoresistive layer is disposed above a surface of a substrate and has a first side and a second side opposite the first side along its extending direction. The conductive part is disposed above or below the horizontal magnetoresistive layer and electrically coupled to the horizontal magnetoresistive layer. The conductive part and the horizontal magnetoresistive layer together form at least an electrical current path. The first magnetic-field-sensing layer is not parallel to the surface of the substrate and magnetically coupled to the horizontal magnetoresistive layer at the first side of the horizontal magnetoresistive layer.
摘要:
A magnetoresistive sensor is provided. Specifically, multiple layers of or single layer of conductor line are formed at the same level as an insulating layer on a substrate as a bottom conductive layer. A magnetoresistive structure is formed on the bottom conductive layer and has opposite first surface and second surface. The second surface faces toward the substrate and is contacted with the bottom conductive layer. Afterward, another insulating layer is formed on the first surface, a slot is formed at the same level as the another insulating layer and a conductor line is formed in the slot and contacted with the first surface, so that one layer or multiple layers of conductor line can be formed as a top conductive layer. A lengthwise extending direction of each of the bottom and top conductor layers is intersected a lengthwise extending direction of the magnetoresistive structure with an angle.
摘要:
A method or manufacturing an integrated circuit structure with a magnetoresistance component is provided. A substrate is provided. A circuit structure layer including a metal pad is formed on the substrate. A dielectric layer is formed on the circuit structure. A metal damascene structure is formed in the dielectric layer. An opening is formed in the dielectric layer so as to form a step-drop. A magnetoresistance material layer is formed on the dielectric layer after forming the metal damascene structure and the opening. A photolithography process is applied to pattern the magnetoresistance material layer to form a magnetoresistance component electrically connected to the metal damascene structure.
摘要:
A tunneling magnetoresistance sensor including a substrate, an insulating layer, a tunneling magnetoresistance component and an electrode array is provided. The insulating layer is disposed on the substrate. The tunneling magnetoresistance component is embedded in the insulating layer. The electrode array is formed in a single metal layer and disposed in the insulating layer either below or above the TMR component. The electrode array includes a number of separate electrodes. The electrodes are electrically connected to the tunneling magnetoresistance component to form a current-in-plane tunneling conduction mode. The tunneling magnetoresistance sensor in this configuration can be manufactured with a reduced cost and maintain the high performance at the same time.
摘要:
The present invention is directed to a structure of a gradient barrier layer. The gradient barrier with a composite structure of metal/metal salt of different composition/metal such as Ta/TaxN1−x/TaN/TaxN1−x/Ta (tantalum/tantalumx nitride1−x/tantalum nitride/tantalumx nitride1−x/tantalum) is proposed to replace the conventional barrier for copper metallization. The gradient barrier can be formed in a chemical vapor deposition (CVD) process or a multi-target physical vapor deposition (PVD) process. For CVD process, using the characteristics of well-controlled reaction gas injection, the ratio of tantalum (Ta) and nitrogen (N) can be modulated gradually to form the gradient barrier. For the multi-target PVD process, the gradient barrier is formed by depositing multi-layers of different composition TaxN1−x films. After subsequent thermal cycle processes such as metal alloy, the inter-layer diffusion occurs and a more smooth distribution of Ta and N is achieved for the gradient barrier. The advantages of forming the gradient barrier include a well-controlled process, a strong adhesion between via and landing metal, more uniform step coverage, and less brittle to reduce crack.
摘要翻译:本发明涉及梯度阻挡层的结构。 具有不同成分/金属的金属/金属盐的复合结构的梯度屏障,例如Ta / Ta x N 1-x / TaN / Ta x x 1 / x 1 / x 3/1 / x 2/1 / x 3 / 提出了替代传统的铜金属化屏障的方法。 梯度屏障可以在化学气相沉积(CVD)工艺或多目标物理气相沉积(PVD)工艺中形成。 对于CVD工艺,使用良好控制的反应气体注入特性,可以逐渐调节钽(Ta)和氮(N)的比例,形成梯度屏障。 对于多目标PVD工艺,通过沉积多层不同组成的Ta x N 1 x-x膜形成梯度屏障。 在随后的热循环过程如金属合金之后,发生层间扩散,并且对梯度屏障实现了更平稳的Ta和N分布。 形成梯度屏障的优点包括良好控制的工艺,通孔和着陆金属之间的牢固粘附,更均匀的台阶覆盖,并且较不易碎以减少裂纹。
摘要:
A method is provided for depositing aluminum thin film layers to form contacts in a semiconductor integrated circuit device. All or some of the deposition process occurs at relatively low deposition rates at a temperature which allows surface migration of the deposited aluminum atoms. Aluminum deposited under these conditions tends to fill contact vias without the formation of voids. The deposition step is periodically interrupted.
摘要:
A method is provided for forming improved quality interlevel aluminum contacts in semiconductor integrated circuits. A contact opening is formed through an insulating layer. A barrier layer is deposited over the surface of the integrated circuit. An aluminum layer is then deposited at relatively low deposition rates at a temperature which allows improved surface migration of the deposited aluminum atoms. Aluminum deposited under these conditions tends to fill contact vias without the formation of voids. The low temperature deposition step can be initiated by depositing aluminum while a wafer containing the integrated circuit device is being heated from cooler temperatures within the deposition chamber.
摘要:
A method is provided of forming a small geometry via or contact of a semiconductor integrated circuit, and an integrated circuit formed according to the same, is disclosed. According to a first disclosed embodiment, an opening is formed partially through an insulating layer overlying a conductive region. Sidewall spacers are formed along the sidewalls of the opening. The remaining insulating layer is etched to expose the underlying conductive region. The contact dimension of the opening is smaller than the opening which can be printed from modern photolithography techniques. According to an alternate embodiment, the opening in the insulating layer expose the underlying conductive region. A polysilicon layer is formed over the insulating layer and in the opening. The polysilicon is oxidized to form a thick oxide in the opening and is etched back to form oxidized polysilicon sidewall spacers which decrease the contact dimension of the opening. According to a further alternate embodiment, an etch stop layer is formed between the insulating layer and conductive region and an opening is formed in the insulating layer exposing the etch stop layer. A sidewall spacer film is formed over the insulating layer and the etch stop layer, both layers having a similar etch rate for a given etchant. The etch stop and spacer layers are etched in the opening to expose the underlying conductive layer thereby forming a contiguous sidewall spacer and etch stop layer on the sides of and under the insulating layer, thereby decreasing the contact dimension of the opening.
摘要:
A method is provided of forming a small geometry via or contact of a semiconductor integrated circuit, and an integrated circuit formed according to the same, is disclosed. According to a first disclosed embodiment, an opening is formed partially through an insulating layer overlying a conductive region. Sidewall spacers are formed along the sidewalls of the opening. The remaining insulating layer is etched to expose the underlying conductive region. The contact dimension of the opening is smaller than the opening which can be printed from modern photolithography techniques. According to an alternate embodiment, the opening in the insulating layer expose the underlying conductive region. A polysilicon layer is formed over the insulating layer and in the opening. The polysilicon is oxidized to form a thick oxide in the opening and is etched back to form oxidized polysilicon sidewall spacers which decrease the contact dimension of the opening. According to a further alternate embodiment, an etch stop layer is formed between the insulating layer and conductive region and an opening is formed in the insulating layer exposing the etch stop layer. A sidewall spacer film is formed over the insulating layer and the etch stop layer, both layers having a similar etch rate for a given etchant. The etch stop and spacer layers are etched in the opening to expose the underlying conductive layer thereby forming a contiguous sidewall spacer and etch stop layer on the sides of and under the insulating layer, thereby decreasing the contact dimension of the opening.