Abstract:
A rebuild node of a storage system can assess risk of the storage system not being able to provide a data object. The rebuild node(s) uses information about data object fragments to determine health of a data object, which relates to the risk assessment. The rebuild node obtains object fragment information from nodes throughout the storage system. With the object fragment information, the rebuild node(s) can assess object risk based, at least in part, on the object fragments indicated as existing by the nodes. To assess object risk, the rebuild node(s) treats absent object fragments (i.e., those for which an indication was not received) as lost. When too many object fragments are lost, an object cannot be rebuilt. The erasure coding technique dictates the threshold number of fragments for rebuilding an object. The risk assessment per object influences rebuild of the objects.
Abstract:
A host machine may host a virtual machine. Virtual machine reboot information, used to reboot the virtual machine in the event of a failure or restart of the virtual machine, may be identified (e.g., file system metadata buffers, a virtual non-volatile random access memory log, user data buffers, and/or data used to reboot the virtual machine such as to perform a reboot mounting operation and/or a reboot replay operation of a volume of data associated with the virtual machine). The virtual machine reboot information may be cached within relatively fast host memory of the host machine (e.g., instead of merely within a relatively slower hard drive or other storage device). In this way, the cached virtual machine reboot information may be quickly retrieved so that the virtual machine may be rebooted in a relatively shorter amount of time.
Abstract:
A host machine may host a virtual machine. Virtual machine reboot information, used to reboot the virtual machine in the event of a failure or restart of the virtual machine, may be identified (e.g., file system metadata buffers, a virtual non-volatile random access memory log, user data buffers, and/or data used to reboot the virtual machine such as to perform a reboot mounting operation and/or a reboot replay operation of a volume of data associated with the virtual machine). The virtual machine reboot information may be cached within relatively fast host memory of the host machine (e.g., instead of merely within a relatively slower hard drive or other storage device). In this way, the cached virtual machine reboot information may be quickly retrieved so that the virtual machine may be rebooted in a relatively shorter amount of time.
Abstract:
A host machine may host a virtual machine. Virtual machine reboot information, used to reboot the virtual machine in the event of a failure or restart of the virtual machine, may be identified (e.g., file system metadata buffers, a virtual non-volatile random access memory log, user data buffers, and/or data used to reboot the virtual machine such as to perform a reboot mounting operation and/or a reboot replay operation of a volume of data associated with the virtual machine). The virtual machine reboot information may be cached within relatively fast host memory of the host machine (e.g., instead of merely within a relatively slower hard drive or other storage device). In this way, the cached virtual machine reboot information may be quickly retrieved so that the virtual machine may be rebooted in a relatively shorter amount of time.
Abstract:
A rebuild node of a storage system can assess risk of the storage system not being able to provide a data object. The rebuild node(s) uses information about data object fragments to determine health of a data object, which relates to the risk assessment. The rebuild node obtains object fragment information from nodes throughout the storage system. With the object fragment information, the rebuild node(s) can assess object risk based, at least in part, on the object fragments indicated as existing by the nodes. To assess object risk, the rebuild node(s) treats absent object fragments (i.e., those for which an indication was not received) as lost. When too many object fragments are lost, an object cannot be rebuilt. The erasure coding technique dictates the threshold number of fragments for rebuilding an object. The risk assessment per object influences rebuild of the objects.
Abstract:
One or more techniques and/or systems are provided for virtual machine rebooting. A host machine may host a virtual machine. Virtual machine reboot information, used to reboot the virtual machine in the event of a failure or restart of the virtual machine, may be identified (e.g., file system metadata buffers, a virtual non-volatile random access memory log, user data buffers, and/or data used to reboot the virtual machine such as to perform a reboot mounting operation and/or a reboot replay operation of a volume of data associated with the virtual machine). The virtual machine reboot information may be cached within relatively fast host memory of the host machine (e.g., instead of merely within a relatively slower hard drive or other storage device). In this way, the cached virtual machine reboot information may be quickly retrieved so that the virtual machine may be rebooted in a relatively shorter amount of time.