Abstract:
An extent-based storage architecture is implemented by a storage server receiving a read request for an extent from a client, wherein the extent includes a group of contiguous blocks and the read request includes a file block number. The storage server retrieves an extent identifier from a first sorted data structure, wherein the storage server uses the received file block number to traverse the first sorted data structure to the extent identifier. The storage server retrieves a reference to the extent from a second sorted data structure, wherein the storage server uses the retrieved extent identifier to traverse the second sorted data structure to the reference, and wherein the second sorted data structure is global across a plurality of volumes. The storage server retrieves the extent from a storage device using the reference and returns the extent to the client.
Abstract:
A network caching system has a multi-protocol caching filer coupled to an origin server to provide storage virtualization of data served by the filer in response to data access requests issued by multi-protocol clients over a computer network. The multi-protocol caching filer includes a file system configured to manage a sparse volume that “virtualizes” a storage space of the data to thereby provide a cache function that enables access to data by the multi-protocol clients. To that end, the caching filer further includes a multi-protocol engine configured to translate the multi-protocol client data access requests into generic file system primitive operations executable by both the caching filer and the origin server.
Abstract:
Among other things, one or more techniques and/or systems are provided for storing data within a hybrid storage aggregate comprising a lower-latency storage tier and a higher-latency storage tier. In particular, frequently accessed data, randomly accessed data, and/or short lived data may be stored (e.g., read caching and/or write caching) within the lower-latency storage tier. Infrequently accessed data and/or sequentially accessed data may be stored within the higher-latency storage tier. Because the hybrid storage aggregate may comprise a single logical container derived from the higher-latency storage tier and the lower-latency storage tier, additional storage and/or file system functionality may be implemented across the storage tiers. For example, deduplication functionality, caching functionality, backup/restore functionality, and/or other functionality may be provided through a single file system (or other type of arrangement) and/or a cache map implemented within the hybrid storage aggregate.
Abstract:
It is determined that a first data block contains the same data as a second data block. The first data block is associated with a first extent and the second data block is associated with a second extent. In response to determining that the first data block contains the same data as the second data block, the second data block is associated with the first extent and the first data block is disassociated with the second extent.
Abstract:
Overwriting part of compressed data without decompressing on-disk compressed data is includes by receiving a write request for a block of data in a compression group from a client, wherein the compression group comprises a group of data blocks that is compressed, wherein the block of data is uncompressed. The storage server partially overwrites the compression group, wherein the compression group remains compressed while the partial overwriting is performed. The storage server determines whether the partially overwritten compression group including the uncompressed block of data should be compressed. The storage server defers compression of the partially overwritten compression group if the partially overwritten compression group should not be compressed. The storage server compresses the partially overwritten compression group if the partially overwritten compression group should be compressed.
Abstract:
Partially overwriting a compression group without decompressing compressed data can consumption of resources for the decompression. A storage server partially overwrites the compression group when a file block identifier of a client's write request resolves to the compression group. The compression group remains compressed while the partial overwriting is performed.
Abstract:
A network caching system has a multi-protocol caching filer coupled to an origin server to provide storage virtualization of data served by the filer in response to data access requests issued by multi-protocol clients over a computer network. The multi-protocol caching filer includes a file system configured to manage a sparse volume that “virtualizes” a storage space of the data to thereby provide a cache function that enables access to data by the multi-protocol clients. To that end, the caching filer further includes a multi-protocol engine configured to translate the multi-protocol client data access requests into generic file system primitive operations executable by both the caching filer and the origin server.
Abstract:
Among other things, one or more techniques and/or systems are provided for storing data within a hybrid storage aggregate comprising a lower-latency storage tier and a higher-latency storage tier. In particular, frequently accessed data, randomly accessed data, and/or short lived data may be stored (e.g., read caching and/or write caching) within the lower-latency storage tier. Infrequently accessed data and/or sequentially accessed data may be stored within the higher-latency storage tier. Because the hybrid storage aggregate may comprise a single logical container derived from the higher-latency storage tier and the lower-latency storage tier, additional storage and/or file system functionality may be implemented across the storage tiers. For example, deduplication functionality, caching functionality, backup/restore functionality, and/or other functionality may be provided through a single file system (or other type of arrangement) and/or a cache map implemented within the hybrid storage aggregate.
Abstract:
A request is received to remove duplicate data. A log data container associated with a storage volume in a storage server is accessed. The log data container includes a plurality of entries. Each entry is identified by an extent identifier in a data structures stored in a volume associated with the storage server. For each entry in the log data container, a determination is made if the entry matches another entry in the log data container. If the entry matches another entry in the log data container, a determination is made of a donor extent and a recipient extent. If an external reference count associated with the recipient extent equals a first predetermined value, block sharing is performed for the donor extent and the recipient extent. A determination is made if the reference count of the donor extent equals a second predetermined value. If the reference count of the donor extent equals the second predetermined value, the donor extent is freed.
Abstract:
An extent-based storage architecture is implemented by a storage server receiving a read request for an extent from a client, wherein the extent includes a group of contiguous blocks and the read request includes a file block number. The storage server retrieves an extent identifier from a first sorted data structure, wherein the storage server uses the received file block number to traverse the first sorted data structure to the extent identifier. The storage server retrieves a reference to the extent from a second sorted data structure, wherein the storage server uses the retrieved extent identifier to traverse the second sorted data structure to the reference, and wherein the second sorted data structure is global across a plurality of volumes. The storage server retrieves the extent from a storage device using the reference and returns the extent to the client.