摘要:
The invention relates to a crystalline ion-conducting material made of LiMPO4 nanoparticles, wherein M is selected from Cr, Mn, Co, Fe and Ni, in addition to mixtures thereof and the nanoparticles have an essentially flat prismatic shape. The invention also relates to a method for producing said type of crystalline ion-conducting material which consists of the following steps: a precursor component is produced in a solution front a lithium compound of a component containing metal ions M and a phosphate compound, the precursor compound is subsequently precipitated from the solution and, optionally, a suspension of the precursor compound is formed, the precursor compound and/or the suspension is dispersed and/or ground, and the precursor compound and/or the suspension is converted under hydrothermal conditions and subsequently, the crystalline material is extracted.
摘要:
The invention describes a process for producing a compound of the formula LiMPO.sub.4, in which M represents at least one metal from the first transition series, comprising the following steps: a) production of a precursor mixture, containing at least one Li.sup.+ source, at least one M.sup.2+ source and at least one PO.sub.4.sup.3− source, in order to form a precipitate and thereby to produce a precursor suspension; b) dispersing or milling treatment of the precursor mixture and/or the precursor suspension until the D90 value of the particles in the precursor suspension is less than 50 .mu.m; and c) the obtaining of LiMPO.sub.4 from the precursor suspension obtained in accordance with b), preferably by reaction under hydrothermal conditions. The material obtainable by this process has particularly advantageous particle size distributions and electrochemical properties when used in electrodes.
摘要:
The invention describes a process for producing a compound of the formula LiMPO4, in which M represents at least one metal from the first transition series, comprising the following steps: a) production of a precursor mixture, containing at least one Li+ source, at least one M2+ source and at least one PO43− source, in order to form a precipitate and thereby to produce a precursor suspension; b) dispersing or milling treatment of the precursor mixture and/or the precursor suspension until the D90 value of the particles in the precursor suspension is less than 50 μm; and c) the obtaining of LiMPO4 from the precursor suspension obtained in accordance with b), preferably by reaction under hydrothermal conditions. The material obtainable by this process has particularly advantageous particle size distributions and electrochemical properties when used in electrodes.
摘要:
The invention describes a process for producing a compound of the formula LiMPO.sub.4, in which M represents at least one metal from the first transition series, comprising the following steps: a) production of a precursor mixture, containing at least one Li.sup.+ source, at least one M.sup.2+ source and at least one PO.sub.4.sup.3− source, in order to form a precipitate and thereby to produce a precursor suspension; b) dispersing or milling treatment of the precursor mixture and/or the precursor suspension until the D90 value of the particles in the precursor suspension is less than 50 .mu.m; and c) the obtaining of LiMPO.sub.4 from the precursor suspension obtained in accordance with b), preferably by reaction under hydrothermal conditions. The material obtainable by this process has particularly advantageous particle size distributions and electrochemical properties when used in electrodes.
摘要:
The invention describes a process for producing a compound of the formula LiMPO4, in which M represents at least one metal from the first transition series, comprising the following steps: a) production of a precursor mixture, containing at least one Li+ source, at least one M2+ source and at least one PO43− source, in order to form a precipitate and thereby to produce a precursor suspension; b) dispersing or milling treatment of the precursor mixture and/or the precursor suspension until the D90 value of the particles in the precursor suspension is less than 50 μm; and c) the obtaining of LiMPO4 from the precursor suspension obtained in accordance with b), preferably by reaction under hydrothermal conditions. The material obtainable by this process has particularly advantageous particle size distributions and electrochemical properties when used in electrodes.
摘要:
A process for the production of sorbents based on bentonite for the uptake of liquids is described. The process is characterized in that a poorly swelling bentonite with a water uptake capacity of less than 100% (in terms of the dried bentonite with a residual water content of 6 wt. %), a montmorillonite content of around 40-65 wt. % and a water content of 20-40 wt. % is homogenized with a basic-reacting alkaline metal compound by thorough kneading and converted by ion exchange to a swelling bentonite, while the pH value of the mixture is not more than 10.5, the mixture is gently dried, and the dried mixture is fragmented.
摘要:
The present invention relates to a method for producing lithium aluminum titanium phosphates of the general formula Li1+xTi2−xAlx(PO4)3, wherein x is ≦0.4, a method for their production as well as their use as solid-state electrolytes in lithium ion accumulators.
摘要:
A carbon-containing lithium titanium oxide containing spherical particle aggregate with a diameter of 1-80 μm, consisting of lithium titanium oxide primary particles coated with carbon. Also, a method for the production of such a carbon-containing lithium titanium oxide as well as an electrode containing such a carbon-containing lithium titanium oxide as active material as well as a lithium-ion secondary battery containing an above-described electrode.
摘要:
A method is described for the manufacture of hydrotalcites by using at least one compound of a bivalent metal (Component A) and at least one compound of a trivalent metal (Component B), wherein at least one of these components is not used in the form of a solution, characterized in that a) at least one of the Components A and/or B which is not used in the form of a solution, shortly before or during mixing of the components, and/or b) the mixture containing the Components A and B is subjected to intensive grinding until an average particle size (D50) in the range of approx. 0.1 to 5 μm is obtained, and optionally, after aging treatment or hydrothermal treatment, the resulting hydrotalcite product is separated, dried, and optionally calcinated. The hydrotalcite precursors and/or fine-particle crystalline hydrotalcites which can be obtained by using the method in accordance with this present invention may be used in particular as catalysts or catalyst carriers or as nanocomposite filling agents or co-stabilizers in a polymer matrix.
摘要:
A method is described for the manufacture of hydrotalcites by using at least one compound of a bivalent metal (Component A) and at least one compound of a trivalent metal (Component B), wherein at least one of these components is not used in the form of a solution, characterized in that a) at least one of the Components A and/or B which is not used in the form of a solution, shortly before or during mixing of the components, and/or b) the mixture containing the Components A and B is subjected to intensive grinding until an average particle size (D50) in the range of approx. 0.1 to 5 μm is obtained, and optionally, after aging treatment or hydrothermal treatment, the resulting hydrotalcite product is separated, dried, and optionally calcinated. The hydrotalcite precursors and/or fine-particle crystalline hydrotalcites which can be obtained by using the method in accordance with this present invention may be used in particular as catalysts or catalyst carriers or as nanocomposite filling agents or co-stabilizers in a polymer matrix.