Abstract:
An organic EL panel includes reflective electrodes, a transparent electrode, organic light-emitting layers, and functional layers that are each provided between a corresponding one of the reflective electrodes and a corresponding one of the respective organic light-emitting layers. The film thicknesses of the respective functional layers of R, G, and B colors are each 60 nm or less such that a local maximum of light-emitting efficiency for a corresponding color is exhibited, and are substantially equal to each other. The optical distances between the respective organic light-emitting layers of the R, G, and B colors and the respective reflective electrodes are each 100 nm or less, and are substantially equal to each other.
Abstract:
An organic light-emitting panel includes a reflective electrode, a functional layer, having a single or multi-layer structure, located on the reflective electrode, an organic light-emitting layer located on the functional layer, a transparent electrode located above the organic light-emitting layer, a low refractive index layer located on the transparent electrode, and a first thin-film sealing layer located on the low refractive index layer. The low refractive index layer has a lower refractive index than both the transparent electrode and the first thin-film sealing layer. Difference between respective refractive indices of the low refractive index layer and the transparent electrode is 0.4-1.1. Difference between respective refractive indices of the low refractive index layer and the first thin-film sealing layer is 0.1-0.8. The low refractive index layer has thickness of 20-130 nm.
Abstract:
An organic light-emitting element includes a reflective anode, a first functional layer, an organic light-emitting layer that emits blue light, a second functional layer, a transparent cathode, and a coating layer. An optical thickness of the first functional layer is greater than 0 nm but not greater than 316 nm. A difference in refractive index between the transparent cathode and either a layer adjacent to the transparent cathode within the second functional layer or a layer adjacent to the transparent cathode within the coating layer is from 0.1 to 0.7 inclusive. The transparent cathode has a physical thickness greater than 0 nm but not greater than 70 nm, a refractive index from 2.0 to 2.4 inclusive, and an optical thickness greater than 0 nm but not greater than 168 nm.
Abstract:
To increase light-extraction efficiency and simplify manufacturing process. An organic EL panel includes: first electrode reflecting incident light; second electrode transmitting incident light therethrough; organic light-emitting layer emitting light of corresponding color among R, G, and B colors; first functional layer including charge injection/transport layer and at least one other layer, and disposed between the first electrode and the light-emitting layer; and second functional layer disposed between the second electrode and the light-emitting layer. The charge injection/transport layers of R, G, and B colors differ in film thickness, the at least one other layers of R, G, and B colors are equal in film thickness to one another, the second functional layers of R, G, and B colors are equal in film thickness to one another, and the light-emitting layers of R and G colors are equal in film thickness, and differ in film thickness from the light-emitting layer of B color.
Abstract:
A hole injection electrode made of a transparent conductive film is formed on a substrate made of indium-tin oxide (ITO) or the like. On the hole injection electrode, a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and an electron injection layer are formed in order. On the electron injection layer, an electron injection electrode made of aluminum is formed. The light emitting layer includes a first dopant made of a material capable of converting triplet excitation energy to an emission of a predetermined color and a second dopant made of a material capable of converting single excitation energy to an emission of the same color as the predetermined color. The difference between the emission peak wavelength of the first dopant and the emission peak wavelength of the second dopant is preferably 20 nm or less.
Abstract:
A method of efficiently manufacturing an organic light-emitting element with excellent light-emitting characteristics is provided. The method includes: preparing ink and filling an inkjet device having an ink ejection nozzle with the ink; preparing a substrate having a base layer including a first electrode; positioning the inkjet device above the substrate; and causing the inkjet device to eject a drop of the ink onto the base layer. In the preparation of the ink, a value Z denoting a reciprocal of the Ohnesorge number Oh determined by density ρ (g/dm3), surface tension γ (mN/m), and viscosity η (mPa·s) of the ink and a diameter r (mm) of the ink ejection nozzle satisfies Formula 1, in the ejection of the drop of the ink, speed V (m/s) of the ejected drop satisfies Formula 2, and the value Z and the speed V (m/s) satisfy Formula 3.
Abstract:
To provide a method of efficiently manufacturing an organic light-emitting element with excellent light-emitting characteristics by application, the method includes: preparing ink and filling an inkjet device having an ink ejection nozzle with the ink; preparing a substrate having a base layer including a first electrode; and positioning the inkjet device above the substrate, and causing the inkjet device to eject a drop of the ink onto the base layer, wherein, in the preparation of the ink, a value Z denoting a reciprocal of the Ohnesorge number Oh determined by density ρ (g/m3), surface tension γ (mN·m), and viscosity η (mPa·s) of the ink and a diameter r (mm) of the ink ejection nozzle satisfies Formula 1, in the ejection of the drop of the ink, speed V (m/s) of the ejected drop satisfies Formula 2, and the value Z and the speed V (m/s) satisfy Formula 3.
Abstract:
An ink for an organic light-emitting element includes a first solvent, a second solvent, and a functional material. The first and second solvents have equal or similar boiling points. The first solvent is such that an imitatively formed functional layer formed by replacing the second solvent with the first solvent, in a light-emitting region of an organic light-emitting element, is thicker at both end portions than at a central portion and the top surfaces of the end portions are positioned higher than the top surface of the central portion. The second solvent is such that an imitatively formed functional layer formed by replacing the first solvent with the second solvent, in a light-emitting region of an organic light-emitting element, is thicker at a central portion than at both end portions and the top surface of the central portion is positioned higher than the top surfaces of the end portions.
Abstract:
In an organic EL device, a hole injection electrode is formed on a glass substrate, and a hole injection layer, a hole transport layer and a luminescent layer are formed in turn on the hole injection electrode. An electron injection electrode is formed on the luminescent layer. The luminescent layer includes an organic iridium compound composed of a combination of a quinoline derivative and iridium. This organic iridium compound can emit red-orange light via a triplet excited state.
Abstract:
An apparatus is provided with a plurality of organic light emitting devices, each having an organic light emitting layer that synthesizes two or more colors of light that are complementary to each other thereby producing white light, and a resonant structure by which a resonant wavelength is set to a predetermined wavelength, and outputs the white light via the resonant structure. The apparatus further comprises a plurality of wavelength selection units on a path through which the white light is outputted, each wavelength selection unit transmitting only light of a particular wavelength included in the outputted white light, the predetermined wavelength substantially coinciding with a wavelength corresponding to a primary color whose luminous intensity is, if without the resonant structure, the lowest of three primary colors included in the produced white light to bring it close to white light ideal for an image display light source.