Abstract:
A capacitive image sensing device and a capacitive image sensing method are provided. The capacitive image sensing device includes a sensor array, a first charge amplifier, a second charge amplifier, a differential amplifier and a first switching circuit. The sensor array includes a plurality of sensing electrodes and a first reference sensing electrode. An input terminal of the first charge amplifier is coupled to one of the sensing electrodes. A first input terminal of the differential amplifier is selectively coupled to an output terminal of the first charge amplifier. A second input terminal of the differential amplifier is coupled to an output terminal of the second charge amplifier. The first switching circuit is configured to selectively electrically connect and disconnect the first reference sensing electrode and the input terminal of the second charge amplifier.
Abstract:
A compensation module for a voltage regulation device having a gain stage, an output stage and a miller compensation module includes a low-output-impedance non-inverting amplifier unit coupled to a gain output of the gain stage and an output-stage input of the output stage.
Abstract:
A current source for quickly adjusting an output current includes a constant current generation module, coupled to a control node, for generating a predefined current flowing through the control node in order to determine a voltage of the control node; a capacitor, coupled to an output terminal of the current source; a current variation detection module, coupled between the control node and the capacitor, for generating a variation on the voltage of the control node via the capacitor when the output terminal of the current source receives an instant current variation; and a trans-conductance amplifier, coupled between the control node and the output terminal, for changing a magnitude of the output current of the output terminal when the variation on the voltage of the control node is generated.
Abstract:
An image compensation circuit for an image sensor includes a gain amplifier, a compensation control circuit, a memory and a digital-to-analog converter (DAC). The gain amplifier is used for receiving a plurality of image signals from the image sensor and amplifying the plurality of image signals. The compensation control circuit is used for generating a plurality of compensation values for the plurality of image signals. The memory, coupled to the compensation control circuit, is used for storing the plurality of compensation values. The DAC, coupled to the memory and the gain amplifier, is used for converting the plurality of compensation values into a plurality of compensation voltages, respectively, to compensate the plurality of image signals with the plurality of compensation voltages.
Abstract:
A voltage converting device with a self-reference feature for an electronic system includes a differential current generating module, implemented in a Complementary metal-oxide-semiconductor (CMOS) processing for generating a differential current pair according to a converting voltage; and a voltage converting module, coupled to the differential current generating module, a first supply voltage and a second supply voltage of the electronic system for generating the converting voltage according to the differential current pair, the first supply voltage and the second supply voltage.
Abstract:
A compensation module for a voltage regulation device having a gain stage, an output stage and a miller compensation module includes a low-output-impedance non-inverting amplifier unit coupled to a gain output of the gain stage and an output-stage input of the output stage.
Abstract:
A reference voltage generator including a reference voltage generating unit is provided. The reference voltage generating unit receives a first bias voltage current and a first mirror current and generates a reference voltage. The reference voltage generating unit includes a first metal-oxide-semiconductor (MOS) transistor, a second MOS transistor, a first impedance providing element and a second impedance providing element. The first and the second MOS transistors operate in a sub-threshold region so as to generate a first gate-source voltage and a second gate-source voltage having a negative temperature coefficient. The first impedance providing element is configured to generate a first current having a positive temperature coefficient. The second impedance providing element is configured to generate a first voltage having a negative temperature coefficient at its first terminal. The reference voltage is equal to a sum of the second gate-source voltage and the first voltage.
Abstract:
A capacitive image sensing device and a capacitive image sensing method are provided. The capacitive image sensing device includes a sensor array, a first charge amplifier, a second charge amplifier, a differential amplifier and a first switching circuit. The sensor array includes a plurality of sensing electrodes and a first reference sensing electrode. An input terminal of the first charge amplifier is coupled to one of the sensing electrodes. A first input terminal of the differential amplifier is selectively coupled to an output terminal of the first charge amplifier. A second input terminal of the differential amplifier is coupled to an output terminal of the second charge amplifier. The first switching circuit is configured to selectively electrically connect and disconnect the first reference sensing electrode and the input terminal of the second charge amplifier.
Abstract:
A voltage regulator including a voltage amplifier, a first output-stage, an AC-pass filter, a current amplifier, a second output-stage and a gain circuit is provided. Output terminals of the first and the second output-stages jointly provide the output voltage of the voltage regulator. Two input terminals of the voltage amplifier respectively receive a reference voltage and the output voltage. An input terminal of the first output-stage is coupled to an output terminal of the voltage amplifier. Two input terminals of the current amplifier respectively receive a reference current and the AC component of the output voltage. An input terminal of the second output-stage is coupled to an output terminal of the current amplifier. An input terminal of the gain circuit is coupled to the output terminal of the voltage amplifier. An output terminal of the gain circuit is coupled to the input terminal of the second output-stage.
Abstract:
A current source for quickly adjusting an output current includes a constant current generation module, coupled to a control node, for generating a predefined current flowing through the control node in order to determine a voltage of the control node; a capacitor, coupled to an output terminal of the current source; a current variation detection module, coupled between the control node and the capacitor, for generating a variation on the voltage of the control node via the capacitor when the output terminal of the current source receives an instant current variation; and a trans-conductance amplifier, coupled between the control node and the output terminal, for changing a magnitude of the output current of the output terminal when the variation on the voltage of the control node is generated.