Abstract:
The present invention relates to methods of producing a polypeptide, comprising: (a) cultivating a mutant of a parent Fusarium venenatum strain in a medium for the production of the polypeptide, wherein the mutant strain comprises a polynucleotide encoding the polypeptide and one or more (several) genes selected from the group consisting of pyrG, amyA, and alpA, wherein the one or more (several) genes are modified rendering the mutant strain deficient in the production of one or more (several) enzymes selected from the group consisting of orotidine-5′-monophosphate decarboxylase, alpha-amylase, and alkaline protease, respectively, compared to the parent Fusarium venenatum strain when cultivated under identical conditions; and (b) recovering the polypeptide from the cultivation medium. The present invention also relates to enzyme-deficient mutants of Fusarium venenatum strains and methods for producing such mutants.
Abstract:
The present invention relates to methods of producing a polypeptide, comprising: (a) cultivating a mutant of a parent Fusarium venenatum strain in a medium for the production of the polypeptide, wherein the mutant strain comprises a polynucleotide encoding the polypeptide and one or more (several) genes selected from the group consisting of pyrG, amyA, and alpA, wherein the one or more (several) genes are modified rendering the mutant strain deficient in the production of one or more (several) enzymes selected from the group consisting of orotidine-5′-monophosphate decarboxylase, alpha-amylase, and alkaline protease, respectively, compared to the parent Fusarium venenatum strain when cultivated under identical conditions; and (b) recovering the polypeptide from the cultivation medium. The present invention also relates to enzyme-deficient mutants of Fusarium venenatum strains and methods for producing such mutants.
Abstract:
The present invention relates to methods of producing a polypeptide, comprising: (a) cultivating a mutant of a parent Fusarium venenatum strain in a medium for the production of the polypeptide, wherein the mutant strain comprises a polynucleotide encoding the polypeptide and one or more (several) genes selected from the group consisting of pyrG, amyA, and alpA, wherein the one or more (several) genes are modified rendering the mutant strain deficient in the production of one or more (several) enzymes selected from the group consisting of orotidine-5′-monophosphate decarboxylase, alpha-amylase, and alkaline protease, respectively, compared to the parent Fusarium venenatum strain when cultivated under identical conditions; and (b) recovering the polypeptide from the cultivation medium. The present invention also relates to enzyme-deficient mutants of Fusarium venenatum strains and methods for producing such mutants.
Abstract:
The present invention relates to methods of producing a polypeptide, comprising: (a) cultivating a mutant of a parent Fusarium venenatum strain in a medium for the production of the polypeptide, wherein the mutant strain comprises a polynucleotide encoding the polypeptide and one or more (several) genes selected from the group consisting of pyrG, amyA, and alpA, wherein the one or more (several) genes are modified rendering the mutant strain deficient in the production of one or more (several) enzymes selected from the group consisting of orotidine-5′-monophosphate decarboxylase, alpha-amylase, and alkaline protease, respectively, compared to the parent Fusarium venenatum strain when cultivated under identical conditions; and (b) recovering the polypeptide from the cultivation medium. The present invention also relates to enzyme-deficient mutants of Fusarium venenatum strains and methods for producing such mutants.
Abstract:
The present invention relates to methods of producing a polypeptide, comprising: (a) cultivating a mutant of a parent Fusarium venenatum strain in a medium for the production of the polypeptide, wherein the mutant strain comprises a polynucleotide encoding the polypeptide and one or more (several) genes selected from the group consisting of pyrG, amyA, and alpA, wherein the one or more (several) genes are modified rendering the mutant strain deficient in the production of one or more (several) enzymes selected from the group consisting of orotidine-5′-monophosphate decarboxylase, alpha-amylase, and alkaline protease, respectively, compared to the parent Fusarium venenatum strain when cultivated under identical conditions; and (b) recovering the polypeptide from the cultivation medium. The present invention also relates to enzyme-deficient mutants of Fusarium venenatum strains and methods for producing such mutants.
Abstract:
The present invention relates to methods of producing a polypeptide, comprising: (a) cultivating a mutant of a parent Fusarium venenatum strain in a medium for the production of the polypeptide, wherein the mutant strain comprises a polynucleotide encoding the polypeptide and one or more (several) genes selected from the group consisting of pyrG, amyA, and alpA, wherein the one or more (several) genes are modified rendering the mutant strain deficient in the production of one or more (several) enzymes selected from the group consisting of orotidine-5′-monophosphate decarboxylase, alpha-amylase, and alkaline protease, respectively, compared to the parent Fusarium venenatum strain when cultivated under identical conditions; and (b) recovering the polypeptide from the cultivation medium. The present invention also relates to enzyme-deficient mutants of Fusarium venenatum strains and methods for producing such mutants.