Abstract:
A method for correct placement of an in-ear communication device, e.g. a hearing aid, in an ear canal of a user, the in-ear communication device comprising an acoustic seal towards inner surfaces of the ear canal and being configured to be located in a bony part of the ear canal during normal operation, comprises: placing the in-ear communication device in the ear canal thereby forming a substantial acoustic seal in the soft part of the ear canal; generating body-conducted sound to inner surface portions of the user's ear canal; gradually inserting the device deeper into the ear canal in the direction towards the ear drum, until a position where the sound level perceived by the user decreases; maintaining the device in this position in the ear canal, this position being the correct position of the device in the bony part of the ear canal. An in-ear device is furthermore provided.
Abstract:
The application relates to a hearing assistance device (HAD) comprising (a) an input transducer system comprising (a1) an audio input transducer (AIT), and (a2) a first supplementary input transducer (SIT1), (b) an output transducer (OT) for converting a processed output signal to a stimulus perceivable by said user as sound, and (c) a signal processing unit (SPU) operationally connected to said audio input transducer (AIT), to said first supplementary input transducer (SIT1), and to said output transducer (OT), said signal processing unit (SPU) being configured for processing said electric audio input signal, and said first supplementary electric input signal, and for providing said processed output signal. The audio input transducer (AIT) is adapted for being located in an ear of the user. In a NORMAL mode of operation, electric audio input signal is processed in the signal processing unit and the supplementary electric input signal(s) are used to control the processing.
Abstract:
The application relates to a hearing assistance device (HAD) comprising (a) an input transducer system comprising (a1) an audio input transducer (AIT), and (a2) a first supplementary input transducer (SIT1), (b) an output transducer (OT) for converting a processed output signal to a stimulus perceivable by said user as sound, and (c) a signal processing unit (SPU) operationally connected to said audio input transducer (AIT), to said first supplementary input transducer (SIT1), and to said output transducer (OT), said signal processing unit (SPU) being configured for processing said electric audio input signal, and said first supplementary electric input signal, and for providing said processed output signal. The audio input transducer (AIT) is adapted for being located in an ear of the user. In a NORMAL mode of operation, electric audio input signal is processed in the signal processing unit and the supplementary electric input signal(s) are used to control the processing.
Abstract:
A hearing aid device configured to be partly or fully inserted into the ear canal of a user is disclosed. The hearing aid device comprises a receiver (loudspeaker) adapted to generate and send an air-borne acoustic signal towards the eardrum when the hearing aid device is partly or fully inserted into the ear canal. The hearing aid device further comprises a microphone configured to receive acoustic signals. The hearing aid device comprises a processing unit configured to determine if the hearing aid device is positioned in a correct position in the ear canal on the basis of the acoustic signals received by the microphone.
Abstract:
The application relates to a hearing assistance device (HAD) comprising (a) an input transducer system comprising (a1) an audio input transducer (AIT), and (a2) a first supplementary input transducer (SIT1), (b) an output transducer (OT) for converting a processed output signal to a stimulus perceivable by said user as sound, and (c) a signal processing unit (SPU) operationally connected to said audio input transducer (AIT), to said first supplementary input transducer (SIT1), and to said output transducer (OT), said signal processing unit (SPU) being configured for processing said electric audio input signal, and said first supplementary electric input signal, and for providing said processed output signal. The audio input transducer (AIT) is adapted for being located in an ear of the user. In a NORMAL mode of operation, electric audio input signal is processed in the signal processing unit and the supplementary electric input signal(s) are used to control the processing.