Abstract:
An adaptive level estimator for providing a level estimate of an electric input signal representing sound is provided. The adaptive level estimator comprises a first level estimator configured to provide a first level estimate of the electric input signal in a first number K1 of frequency bands; a second level estimator configured to provide a second level estimate of the electric input signal and/or associated attack/release time constants in a second number K2 of frequency bands, wherein K2 is smaller than K1; and a level control unit receiving said first and second level estimates and configured to provide said resulting level estimate based on said first and said second level estimates and/or said associated attack/release time constants. The invention may e.g. be used in devices or applications that benefit from a dynamic adaptation of an input signal level to a listener's (possibly limited) dynamic range of sound level perception, or to any other specific dynamic range deviating from that of the environment sound.
Abstract:
A hearing device with an adjustable vent is disclosed. The device includes at least one microphone configured to provide an input signal representing sound, a processor configured to process the input signal and provide a processed signal, at least one loudspeaker configured to receive the processed signal from the processor and to provide an acoustic signal based on the processed signal to the ear of a user, an earpiece comprising a vent, and an electrically controllable valve configured to control the vent, and a valve control unit configured to receive one or more control signals in dependence of a current hearing situation of the hearing device, wherein the valve control unit is configured to adjust the electrically controllable valve in dependence of the one or more control signals to provide the vent to be in a state between an acoustically more open and an acoustically less open state.
Abstract:
A hearing aid comprises a forward path comprising a) at least two input transducers, each for picking up sound from the environment of the hearing aid and providing respective at least two electric input signals; b) a beamformer filter for filtering said at least two electric input signals or signals originating therefrom and providing a spatially filtered signal; c) a signal processor for processing one or more of said electric input signals or one or more signals originating therefrom, and providing one or more processed signals based thereon; and d) an output transducer for generating stimuli perceivable by the user as sound based on said one or more processed signals. The hearing aid further comprises e) a feedback estimation system for estimating a current feedback from the output transducer to each of the at least two input transducers and providing respective feedback measures indicative thereof; and f) a controller configured to receive said feedback measures from said feedback estimation system and to switch between two modes of operation of the hearing aid, a one-input transducer (e.g. omni-directional) mode of operation, and a multi-input transducer (directional) mode of operation, in dependence of the feedback measures. to. The application further relates to a method of operating a hearing aid. Thereby the gain provided by the hearing aid to the user (without a significant risk of howl) can be maximized.
Abstract:
A hearing device with an adjustable vent is disclosed. The device includes at least one microphone configured to provide an input signal representing sound, a processor configured to process the input signal and provide a processed signal, at least one loudspeaker configured to receive the processed signal from the processor and to provide an acoustic signal based on the processed signal to the ear of a user, an earpiece comprising a vent, and an electrically controllable valve configured to control the vent, and a valve control unit configured to receive one or more control signals in dependence of a current hearing situation of the hearing device, wherein the valve control unit is configured to adjust the electrically controllable valve in dependence of the one or more control signals to provide the vent to be in a state between an acoustically more open and an acoustically less open state.
Abstract:
The application relates to a method of fitting a hearing device to a user, the method comprising a) Defining a user as a first time user; b) Selecting a processing algorithm to have special first time user settings; c) Defining prescribed settings for the user; d) Defining special first time user settings for said processing algorithm; e) Defining a scheme for adapting said special first time user settings to said prescribed settings over time. The application further relates to a method of a fitting system and to a hearing device. The object of the present application is to provide an alternative fitting scheme for a first time user of a hearing device. The method further provides that the processing algorithm to have special first time user settings is selected from the group comprising noise reduction algorithms, directionality algorithms, binaural compression algorithms, and a combination thereof. The method provides an alternative way of customizing a first time user of a hearing device to the usage of the hearing device. The invention may e.g. be used in hearing devices that need to be customized to a particular user's wishes.
Abstract:
The application relates to a method of fitting a hearing device to a user, the method comprising a) Defining a user as a first time user; b) Selecting a processing algorithm to have special first time user settings; c) Defining prescribed settings for the user; d) Defining special first time user settings for said processing algorithm; e) Defining a scheme for adapting said special first time user settings to said prescribed settings over time. The application further relates to a method of a fitting system and to a hearing device. The object of the present application is to provide an alternative fitting scheme for a first time user of a hearing device. The method further provides that the processing algorithm to have special first time user settings is selected from the group comprising noise reduction algorithms, directionality algorithms, binaural compression algorithms, and a combination thereof. The method provides an alternative way of customizing a first time user of a hearing device to the usage of the hearing device. The invention may e.g. be used in hearing devices that need to be customized to a particular user's wishes.
Abstract:
There is provided a hearing aid with a Receiver In The Ear speaker assembly comprising an connecting member with electric conductors connecting a connector at one end, and a receiver housing with a receiver at the opposite end. A microphone housing with a microphone is attached to the connecting member. Placed along the connecting member, the microphone housing with the microphone is separated by a distance from the receiver in the receiver housing, thus reducing acoustic or mechanical feedback problems. Especially, the microphone and connector may share one common housing.
Abstract:
There is provided a hearing aid with a Receiver In The Ear speaker assembly comprising a connecting member with electric conductors connecting a connector at one end, and a receiver housing with a receiver at the opposite end. A microphone housing with a microphone is attached to the connecting member. The microphone housing with the microphone is separated by a distance from the receiver in the receiver housing, thus reducing acoustic or mechanical feedback problems. Especially, the microphone and connector may share one common housing.
Abstract:
There is provided a hearing aid with a Receiver In The Ear speaker assembly comprising a connecting member with electric conductors connecting a connector at one end, and a receiver housing with a receiver at the opposite end. A microphone housing with a microphone is attached to the connecting member. Placed along the connecting member, the microphone housing with the microphone is separated by a distance from the receiver in the receiver housing, thus reducing acoustic or mechanical feedback problems. Especially, the microphone and connector may share one common housing.
Abstract:
An adaptive level estimator for providing a level estimate of an electric input signal representing sound is provided. The adaptive level estimator comprises a first level estimator that provides a first level estimate of the electric input signal in a first number K1 of frequency bands; a second level estimator that provides attack/release time constants associated with a second level estimate of the electric input signal in a second number K2 of frequency bands, wherein K2 is smaller than K1; and a level control unit that provides a resulting level estimate based on said first level estimates and said attack/release time constants associated with said second level estimates. The level estimator may be used in devices or applications that benefit from a dynamic adaptation of an input signal level to a listener's dynamic range of sound level perception, or to any other specific dynamic range deviating from that of the environment sound.