Abstract:
A biological information measuring apparatus includes a light source that emits emission light with which a portion to be examined is to be irradiated, a photodetector that detects light returning from the portion to be examined, and an optical element that includes at least one lens and that is disposed in an optical path between the light source and the portion to be examined. At least one value selected from the group consisting of a thickness and a refractive index of the at least one lens varies along a first direction extending from a center portion of the at least one lens toward an outer edge portion, and the at least one value is locally minimum at the center portion and locally maximum at a first portion that lies between the center portion and the outer edge portion.
Abstract:
An imaging device includes a light source, an image sensor, and a controller. Each pixel of the image sensor includes first and second accumulators and a discharger. The controller, while a component of light from the light source reflected by the surface of a target is incident on the image sensor, causes the accumulators to accumulate signal charge not discharged to the discharger, by setting the image sensor so that signal charge is discharged to the discharger, while a component having scattered inside the target is incident on the image sensor, causes the first accumulator to accumulate signal charge by setting the image sensor so that signal charge is not discharged to the discharger and signal charge is accumulated in the first accumulator, and causes the image sensor to generate first and second signals that are respectively based on signal charge accumulated in the first and second accumulators.
Abstract:
A biological information measuring device according to an aspect of the present disclosure includes: a light source that, in operation, emits irradiation light for irradiating a test portion of a subject; a light detector that, in operation, detects light from the subject and outputs an electrical signal corresponding to the light; and a control circuit that, in operation, determines a power of the irradiation light emitted by the light source, and that, in operation, measures biological information related to a blood flow at the test portion based on the electrical signal. The control circuit, in operation, detects a distance between the light source and the test portion based on the electrical signal, and determines the power of the irradiation light such that the power of the irradiation light is increased as the distance increases.
Abstract:
An imaging apparatus according to an aspect of the present disclosure includes an image sensor which, in operation, acquires m kinds (m is an integer which is 1 or larger) of light, the m kinds of light each having wavelength characteristic different from each other and outputs one or more signals each corresponding to each of the m kinds of light, and a signal processing circuit which, in operation, processes the one or more signals to generate and output n, which is larger than m, pieces of images corresponding to respective wavelength regions different from each other.
Abstract:
An object classification method includes: acquiring image data of an image including feature information indicating a feature of an object; and classifying the object included in the image, based on the feature information. The image data is acquired by causing a first image capture device to capture the image. The first image capture device includes: an image sensor; and a filter array that is arranged on an optical path of light that is incident on the image sensor and that includes translucent filters two-dimensionally arrayed along a plane that crosses the optical path, the translucent filters including two or more filters in which wavelength dependencies of light transmittances are different from each other, and light transmittance of each of the two or more filters having local maximum values in a plurality of wavelength ranges.
Abstract:
An identifying device includes a light source, an image sensor, a memory that stores biometric data indicating a feature of a body of a user, and a processor. The processor causes the light source to emit pulsed light having a pulse duration of more than or equal to 0.2 ns and less than or equal to 1 μs to illuminate the user with the pulsed light, causes the image sensor to detect at least part of reflected pulsed light that returns from the user and to output a signal corresponding to two-dimensional distribution of an intensity of the at least part of the reflected pulsed light, and verifies the signal against the biometric data to identify the user.
Abstract:
A biological measuring device includes a light source that emits first light illuminating an area on a living body, an imaging device that detects second light returned from the living body and acquires a first image including at least part of the living body, and a control circuit that controls the light source. If a specific part of the living body is not located in a predetermined coordinate range in the first image, the control circuit restricts emission of the first light from the light source. The predetermined coordinate range is set outside the area.
Abstract:
An imaging apparatus according to an aspect of the present disclosure includes a light source that, in operation, emits pulsed light to a living body, an image sensor that includes at least one pixel including a photodiode and charge accumulators that, in operation, accumulate signal charge from the photodiode, and a control circuit that, in operation, controls the image sensor. The charge accumulators, in operation, accumulate the signal charge corresponding to a component of the pulsed light scattered inside the living body.
Abstract:
A measurement apparatus includes first and second light sources, a diffuser, a photodetector, and a processing circuit. The first and second light sources respectively output first emitted light and second emitted light. The mirror causes the first emitted light and the second emitted light to be concentrated and incident on one region of the diffuser. The photodetector detects first reflected light and second reflected light that emanate from a subject due to the first emitted light and the second emitted light diffused by the diffuser, respectively. The processing circuit generates and outputs information related to the subject, based on the result of detection of the first reflected light and the second reflected light by the photodetector. The distance between two light spots respectively formed on the one region by the first emitted light and the second emitted light is less than the distance between the first and second light sources.
Abstract:
An optical sensing apparatus includes a laser device, a photodetector, and a control circuit. The laser device includes a light source that emits laser light, a diffusing member having a diffusing surface that crosses an optical path of the laser light, the diffusing member making the laser light lower in intensity in a first portion, making the laser light higher in intensity in a second portion, and enlarging a beam diameter of the laser light, and a screen, and irradiates a physical object with the laser light having passed through the screen or the laser light reflected by the screen. The control circuit causes the laser device to irradiate the physical object with at least one optical pulse of the laser light and causes the photodetector to perform a time-resolved measurement of at least one reflected optical pulse of the laser light returning from the physical object.