Abstract:
An image display device according to an aspect of the present disclosure includes: a display including light-emitting elements arrayed two-dimensionally, and having regions, in each of which a part of the light-emitting elements is located; a lens array including lenses, each of the lenses being disposed correspondingly to one of the regions, the lens array forming real images or virtual images of images displayed at each of the regions; and a control circuit that, in operation, controls each of the light-emitting elements, the control circuit being electrically connected to the display, and, in operation, causing a first part of the light-emitting elements to emit light when the control circuit causes a second part of the light-emitting elements different from the first part of the light-emitting elements not to emit light.
Abstract:
An imaging apparatus includes a lens optical system, a color image sensor that includes at least first pixels and second pixels, and a first optical element array disposed between the lens optical system and the color image sensor. In the imaging apparatus, the lens optical system includes optical regions, and the optical regions include a first optical region and a second optical region that differ in terms of at least one selected from the group of spectral transmittance characteristics and transmissive polarization characteristics. The first pixels include respective spectral filters having mutually different spectral transmittance characteristics, and the second pixels include respective spectral filters having at least one type of spectral transmittance characteristics. The first optical element array directs light that has passed through the first optical region to the first pixels and directs light that has passed through the second optical region to the second pixels.
Abstract:
An imaging apparatus according to an aspect of the present disclosure includes an image sensor which, in operation, acquires m kinds (m is an integer which is 1 or larger) of light, the m kinds of light each having wavelength characteristic different from each other and outputs one or more signals each corresponding to each of the m kinds of light, and a signal processing circuit which, in operation, processes the one or more signals to generate and output n, which is larger than m, pieces of images corresponding to respective wavelength regions different from each other.
Abstract:
An imaging device includes: an optical system having a lens and a diaphragm; an image sensor having a first pixel and a second pixel which a light that has passed through the optical system enters; and an optical element array positioned between the optical system and the image sensor, the optical system has an optical filter including a first region and a second region having different optical characteristics, the optical element array makes the light that has passed through the first region enter the first pixel and makes the light that has passed through the second region enter the second pixel, and an entrance pupil of the optical system is located between the diaphragm and an object.
Abstract:
An identifying device includes a light source, an image sensor, a memory that stores biometric data indicating a feature of a body of a user, and a processor. The processor causes the light source to emit pulsed light having a pulse duration of more than or equal to 0.2 ns and less than or equal to 1 μs to illuminate the user with the pulsed light, causes the image sensor to detect at least part of reflected pulsed light that returns from the user and to output a signal corresponding to two-dimensional distribution of an intensity of the at least part of the reflected pulsed light, and verifies the signal against the biometric data to identify the user.
Abstract:
An imaging apparatus according to an aspect of the present disclosure includes a light source that, in operation, emits pulsed light to a living body, an image sensor that includes at least one pixel including a photodiode and charge accumulators that, in operation, accumulate signal charge from the photodiode, and a control circuit that, in operation, controls the image sensor. The charge accumulators, in operation, accumulate the signal charge corresponding to a component of the pulsed light scattered inside the living body.
Abstract:
An image display device according to an aspect of the present disclosure includes: a display including light-emitting elements arrayed two-dimensionally, and having regions, in each of which a part of the light-emitting elements is located; a mirror lens array including mirror lenses, each of the mirror lenses being disposed correspondingly to one of the regions, reflecting light from the regions, and forming virtual images; and a beam splitter disposed between the display and the mirror lens array, the beam splitter transmitting a part of the light from the regions in a direction of the mirror lens array and reflecting a part of reflected light from the mirror lens array.
Abstract:
A biometric measurement apparatus includes a light source that emits light onto a head portion of a user, an image sensor, a controller that controls the light source and the image sensor, and a signal processor. The controller causes the light source to emit the light and causes the image sensor to output an image signal by causing the image sensor to detect at least part of reflected light returning from the head portion in response to emission of the light. The signal processor generates brain activity data indicating a state of a brain of the user and stops outputting the brain activity data based on at least one selected from the group consisting of the image signal and a sensor signal output from a sensor that detects a change, affecting the brain activity data, in an environment surrounding the user.
Abstract:
An imaging apparatus according to an aspect of the present disclosure includes a first coding element that includes regions arrayed two-dimensionally in an optical path of light incident from an object, and an image sensor. Each of the regions includes first and second regions. A wavelength distribution of an optical transmittance of the first region has a maximum in each of first and second wavelength bands, and a wavelength distribution of an optical transmittance of the second region has a maximum in each of third and fourth wavelength bands. At least one selected from the group of the first and second wavelength bands differs from the third and fourth wavelength bands. The image sensor acquires an image in which components of the first, second, third and fourth wavelength bands of the light that has passed through the first coding element are superimposed on one another.
Abstract:
An image pickup apparatus includes an encoder which is arranged on an optical path of light incident from an object and which has a plurality of regions with first light transmittance and a plurality of regions with second light transmittance lower than the first light transmittance, a dispersive element which is arranged on an optical path of at least one part of light after passage through the encoder and which spatially shifts the at least one part of the light in accordance with wavelength, and at least one image pickup device which is arranged to receive light after passage through the dispersive element and light without passage through the dispersive element and which acquires a first image, in which light components for respective wavelengths spatially shifted by the dispersive element are superimposed, and a second image based on the light without passage through the dispersive element.