Abstract:
The present invention provides a tubular thermoelectric generation device, comprising: a plurality of plate-like p-type thermoelectric members each having an external periphery, a through hole, and an internal periphery formed around the through hole; a plurality of plate-like n-type thermoelectric members each having an external periphery, a through hole, and an internal periphery formed around the through hole; a plurality of external electrodes; and a plurality of internal electrodes. Each of the plurality of the external electrodes comprises an internal flange expanded in a direction from the external periphery of the p-type thermoelectric member toward the internal periphery of the p-type thermoelectric member. Each of the plurality of the internal electrodes comprises an external flange expanded in a direction from the internal periphery of the p-type thermoelectric member toward the external periphery of the p-type thermoelectric member.
Abstract:
A method for reducing carbon dioxide is provided. In the present method, used is an anode electrode comprises a stacked structure of a photoelectric conversion layer, a metal layer, and an InxGa1-xN layer (where 0
Abstract translation:提供了一种减少二氧化碳的方法。 在本方法中,使用包括光电转换层,金属层和In x Ga 1-x N层(其中0
Abstract:
The present invention provides a methanol generation device for generating methanol by reducing carbon dioxide, comprising: a container for storing an electrolyte solution containing carbon dioxide; a cathode electrode disposed in the container so as to be in contact with the electrolyte solution; an anode electrode disposed in the container so as to be in contact with the electrolyte solution; and an external power supply for applying a voltage so that a potential of the cathode electrode is negative with respect to a potential of the anode electrode. The cathode electrode has a region of Cu1-x-yNixAuy (0
Abstract:
The present invention provides a methanol generation device for generating methanol by reducing carbon dioxide, comprising: a container for storing an electrolyte solution containing carbon dioxide; a cathode electrode disposed in the container so as to be in contact with the electrolyte solution; an anode electrode disposed in the container so as to be in contact with the electrolyte solution; and an external power supply for applying a voltage so that a potential of the cathode electrode is negative with respect to a potential of the anode electrode. The cathode electrode includes a region of Cu1-xAux (0
Abstract:
In a carbon dioxide reduction method according to the present disclose, used is a carbon dioxide reduction device comprising a cathode container in which a first electrolyte containing carbon dioxide is stored, an anode container in which a second electrolyte is stored, a solid electrolyte membrane, a condenser, a cathode electrode having a metal or a metal compound on the surface thereof, and anode electrode having a region formed of a nitride semiconductor layer in which a GaN layer and an AlxGa1-xN layer are stacked. The anode electrode is irradiated with light condensed by the condenser and having a wavelength of not more than 360 nanometers to reduce the carbon dioxide contained in the first electrolyte on the cathode electrode.
Abstract translation:在根据本公开的二氧化碳还原方法中,使用二氧化碳还原装置,其包括其中存储有二氧化碳的第一电解质的阴极容器,存储第二电解质的阳极容器,固体电解质膜, 在其表面上具有金属或金属化合物的电容器,阴极电极和具有层叠有GaN层和Al x Ga 1-x N层的氮化物半导体层形成的区域的阳极电极。 用由冷凝器冷凝并具有不大于360纳米的波长的光照射阳极以减少阴极上第一电解质中所含的二氧化碳。
Abstract:
The present disclosure provides a light concentrating device for a photochemical reaction device capable of decreasing abnormal chemical reactions that occur when intensity of sunlight is too strong for an electrode of a photochemical reaction device. The light concentrating device includes a lens for concentrating sunlight on the electrode of the photochemical reaction device, a lens movement device for moving the lens in an optical axis direction, an image pickup device for picking up an image of transmitted sunlight that passes through the electrode, an abnormal chemical reaction detector for detecting presence of an abnormal chemical reaction on the electrode based on information on the image picked up by the image pickup device, and a lens position controller for controlling the lens movement device to move the lens to decrease occurrence of the abnormal chemical reaction when the abnormal chemical reaction detector detects the abnormal chemical reaction.