Abstract:
A motor control device which controls a motor for driving a blower unit, comprises: a target motor output calculating section which calculates a target motor output which causes an air flow of air supplied from the blower unit to coincide with a target air flow; and an operation command generating section which obtains the motor output of the motor, and generates a command for controlling a physical amount of the motor such that the motor output coincides with the target motor output based on a result of comparison between the motor output and the target motor output; and the target motor output calculating section is configured to calculate the target motor output as a product of a polynomial of variables derived by dividing the target air flow by the motor speed, and a cube of the motor speed.
Abstract:
A motor includes a stator including a stator core and teeth respectively protruding from the stator core, and coils respectively wound onto the teeth n (n is an integer of 3 or greater) turns. In a cross section in a first direction representing each of directions of protrusion of the teeth from the stator core, a k-th (k is an integer, 1
Abstract:
A motor drive circuit includes; a rotor position detector that detects a position of a rotor and outputs a rotor position detection signal; a rotor position signal generator that generates signals P1, P2, P3, P4, P5, and P6 as a rotor position signal based on the rotor position detection signal output from the rotor position detector; a rotation direction recognition unit that recognizes a rotation direction of the rotor each time one of signals P1, P2, P3, P4, P5, and P6 is input and replaces the rotor position signal with a corrected rotor position signal; and a winding current output unit that outputs a current to a winding based on the corrected rotor position signal.
Abstract:
A permanent-magnet-embedded electric motor includes a stator having a coil wound on a stator core, and a rotor disposed rotatably inside the stator through a gap to an inner circumferential surface of the stator core. The rotor is provided with a rotor core formed of laminated steel plates having a plurality of magnet-embedding holes, and a permanent magnet housed and retained in each of the magnet-embedding holes. A thickness of the bridge portions formed between edges of the magnet-embedding holes and an outer circumference of the rotor core, and a thickness of a thinned link portion connecting adjoining two of the bridge portions are thinner than a thickness of the steel plates.
Abstract:
A motor includes a stator core, teeth respectively protruding from the stator core, and coils respectively wound onto the teeth n (n is an integer of 2 or greater) turns including first to n-th turns. Within each of ranges respectively wound with the coils onto the teeth in directions of protrusion of the teeth from the stator core, the first turn of each of the coil lies adjacent to a center of the motor. A k-th (k is an integer, 1
Abstract:
A motor drive device of the present invention includes a speed signal generator that generates a rotation speed signal indicating rotation speed; a PWM signal generator that acts on the power switch unit to control the power switch unit so as to generate coil-applied voltage; and a phase advance information generator that has characteristic curve information representing changes of rotation speed of and load on a brushless motor, preliminarily set. The phase advance information generator generates phase advance information according to the load characteristic curve to variably control the phase advance (the phase of voltage applied to the coils of the brushless motor, relative to the induced voltage phase) according to the load characteristic curve.
Abstract:
A motor includes a stator including a stator core and teeth respectively protruding from the stator core in predetermined directions of protrusion, and coils respectively wound onto the teeth n (n is an integer of 3 or greater) turns including first to n-th turns. A k-th (k is an integer, 1