Abstract:
A method and apparatus for providing total power from one transmit path. The method provides the steps of: selecting a transmit path and closing a first switch, located after a digital to analog converter. A second switch between the two transmit paths is then closed in order to provide for the use of at least one low-pass filter in each transmit path. The signal is then processed through the at least one low pass filter in each transmit path. The signal is then processed through at least one mixer in each transmit path. After the mixer, the signal is then processed through at least one driver amplifier in each transmit path, and one-half of the total power is allocated to each of two transmission paths. A third switch is then closed after the at least one power amplifier in each transmit path to force the half-power from one transmit path into one output.
Abstract:
A method and apparatus for providing total power from one transmit path. The method provides the steps of: selecting a transmit path and closing a first switch, located after a digital to analog converter. A second switch between the two transmit paths is then closed in order to provide for the use of at least one low-pass filter in each transmit path. The signal is then processed through the at least one low pass filter in each transmit path. The signal is then processed through at least one mixer in each transmit path. After the mixer, the signal is then processed through at least one driver amplifier in each transmit path, and one-half of the total power is allocated to each of two transmission paths. A third switch is then closed after the at least one power amplifier in each transmit path to force the half-power from one transmit path into one output.
Abstract:
Certain aspects of the present disclosure provide a glass ceramic antenna package having a large bandwidth (e.g., 19 GHz) for millimeter wave (mmWave) applications, for example. The antenna package generally includes an antenna element comprising a first substrate layer and a second substrate layer, wherein the first substrate layer comprises an antenna, wherein the second substrate layer comprises shielding elements and feed lines, and wherein the feed lines are electrically coupled to the antenna. The antenna package also includes a lead frame adjacent to one or more lateral surfaces of the antenna element.
Abstract:
Methods, systems, and devices for wireless communications are described. A wireless device may dynamically select subsets of antenna elements within an array based on power consumption and link performance and/or a configuration of components at the wireless device. For example, a wireless device may identify an antenna array having multiple antenna elements, and the wireless device may select respective subsets of antenna elements (e.g., subarrays) for uplink and downlink transmissions. In such cases, the selection may be based on a tradeoff of power consumption at the device and link performance. Additionally or alternatively, the selection may be based on a configuration and/or constraints on a number of radio frequency (RF) components of the wireless device. The wireless device may communicate based on the dynamic selection of different subsets of antenna elements of an array for uplink and downlink communications.
Abstract:
An apparatus comprising a transmit path, a plurality of local oscillators and a control unit. The control unit may be configured to: receive an upcoming resource block (RB) allocation; determine whether the upcoming RB allocation is the same as the current RB allocation; in response to determining that the upcoming RB allocation is different than the current RB allocation: select an unused LO of the plurality of LOs; determine whether a number of allocated RBs associated with the upcoming RB allocation is greater than a threshold; and in response to determining that the number of allocated RBs associated with the upcoming RB allocation is not greater than the threshold, tune the selected LO to a frequency corresponding to the upcoming RB allocation.
Abstract:
An apparatus comprising a transmit path, a plurality of local oscillators and a control unit. The control unit may be configured to: receive an upcoming resource block (RB) allocation; determine whether the upcoming RB allocation is the same as the current RB allocation; in response to determining that the upcoming RB allocation is different than the current RB allocation: select an unused LO of the plurality of LOs; determine whether a number of allocated RBs associated with the upcoming RB allocation is greater than a threshold; and in response to determining that the number of allocated RBs associated with the upcoming RB allocation is not greater than the threshold, tune the selected LO to a frequency corresponding to the upcoming RB allocation.
Abstract:
Various aspects of the present disclosure provide an apparatus for wireless communication. The apparatus may include an integrated circuit, an antenna, and a module located adjacent to the antenna. The module may include at least one of a power amplifier or a low-noise amplifier. The power amplifier may be configured to amplify a signal received from the integrated circuit for transmission by the antenna. The low-noise amplifier may be configured to amplify a signal received from the antenna for reception by the integrated circuit. The module may be separate from the integrated circuit. A length of a feed line connecting the antenna and the module may be less than a length of a feed line connecting the module and the integrated circuit. The module may also include a switching mechanism configured to switch operation of the module between transmission and reception.
Abstract:
Methods and apparatuses are presented for harmonic reject upconverting a baseband signal using at least one quadrature passive upconversion mixer. In some embodiments, an apparatus may include a first quadrature passive mixer configured to receive a first baseband input and a first LO input, and a second quadrature passive mixer configured to receive a second baseband input and a second LO input. A first output of said first passive mixer may be directly connected to a first output of said second passive mixer and together coupled to a first amplifier input. A second output of said first passive mixer may be directly connected to a second output of said second passive mixer and together coupled to a second amplifier input. The transmitter may be configured to output an upconverted signal with at least one rejected harmonic spurious mixing product based on the first and second amplifier inputs.
Abstract:
A transmitter includes a delta-sigma modulator characterized by a noise transfer function having a multitude of zeroes positioned substantially near a frequency band of a receive signal. The transmitter further includes, in part, a multi-phase digital-to-analog (DAC) converter converting an output signal of the delta-sigma modulator to an analog signal. The DAC is characterized by a transfer function that passes the desired signal to its output and attenuates a multitude of images of the sampling clock signal. The transmitter transmits at a frequency defined by an odd multiple of a fraction of the sampling clock signal frequency. The DAC includes a number of stages each pair of which is associated with one of the images being attenuated. The delta-sigma modulator includes a multitude of stages each associated with a different one of the zeroes. Each stage of said delta-sigma modulator optionally receives three tap coefficients.
Abstract:
Techniques for improving rejection of out-of-band interference in a noise-cancelling receive architecture. In an aspect, capacitors blocking in-band signals and passing through out-of-band signals destructively couple an auxiliary mixer output to a mixer output. In a further aspect, cross-coupling capacitors are provided to couple a first signal path with a second signal path of the noise-cancelling receive signal path. Baseband poly phase cross-coupling blocker filtering is further provided for out-of-band interference cancellation to create notch responses at blocker offset frequencies. The techniques disclosed may readily be adapted for multi-phase local oscillator systems.