Abstract:
Methods and apparatus for wireless communication via a communication device (e.g, via a 1X Advanced enabled mobile device) are discussed. Embodiments can include calculating that a temperature associated with the mobile device has exceeded a thermal threshold. Aspects of the methods and apparatus include transmitting a guarantee frame, from each set of frames to be transmitted, when the temperature associated with a mobile device has exceeded the thermal threshold. Aspects of the methods and apparatus include determining that the temperature associated with a mobile device has fallen below the thermal threshold. Aspects of the methods and apparatus also include reactivating normal transmissions upon determining that the temperature associated with the mobile device has fallen below the thermal threshold. Other aspects, embodiments, and features are also claimed and described.
Abstract:
Methods, systems, and devices for wireless communications are described for uplink transmit power determination in which a user equipment (UE) may be configured for carrier aggregation of multiple concurrent uplink component carrier (CC) transmissions. The UE may apply an adjustment to a maximum transmit power limit (MTPL) for one or more CCs when the UE is configured for uplink carrier aggregation. The MTPL adjustment may be applied to reduce a transmit power of one of the CCs when a maximum transmit power is requested for the CC. The MTPL adjustment may reduce the transmit power to be less than the MTPL of the UE and thereby provide that one or more other CCs may still have some transmission power. The UE may compute a MTPL adjustment based on a static value or on a per-subframe basis based on scheduling parameters and a requested transmit power for each CC.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided. The apparatus may be a UE. The UE communicates with one or more base stations. The UE determines a first preferred RAT of a first application. The UE determines an RAT used on a first carrier in communication with the one or more base stations. The UE selectively allows and disallows the first application to communicate data with the one or more base stations on the first carrier based on the RAT used on the first carrier and the first preferred RAT.
Abstract:
Apparatus and methods for optimizing data transmission include receiving an indicator indicating the availability of a first communication channel, the first communication channel having a higher data rate than a second communication channel. Aspects can include determining whether the first communication channel is available to transmit data based on the indicator, and transmitting the data via the first communication channel, upon determining that the first communication channel is available. Additionally, aspects include entering a sleep state, upon determining that the first communication channel is not available, and determining whether the first communication channel has become available during a subsequent awake period. Entering a sleep state and determining whether the first communication channel has become available during a subsequent awake period may occur until the first communication channel becomes available or until an expiration of a timer. Other aspects, embodiments, and features are also claimed and described.
Abstract:
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a wireless communication device may identify, based at least in part on a scaling factor, one or more phase weights associated with a transmit beam of the wireless communication device. The scaling factor is associated with a frequency in a frequency band associated with the wireless communication device. The wireless communication device may generate, based at least in part on the one or more phase weights, the transmit beam. The wireless communication device may transmit a wireless communication using the transmit beam. Numerous other aspects are described.
Abstract:
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may communicate on a primary carrier using a first antenna port. The UE may communicate on a secondary carrier using a second antenna port. The UE may determine whether to switch the secondary carrier from the second antenna port to the first antenna port based on a channel condition associated with the second antenna port. The UE may switch the secondary carrier from the second antenna port to the first antenna port based on a determination to switch the secondary carrier from the second antenna port to the first antenna port. Numerous other aspects are provided.
Abstract:
The present disclosure provides for reducing power consumption in multi-subscriber identity module (SIM) devices. For example, a user equipment (UE) may determine that a first subscription associated with a first SIM corresponds to a designated data subscription (DDS). The first subscription being different from a second subscription associated with a second SIM at the UE. In one aspect, the UE may transmit carrier aggregation (CA) capability information including one or more intra-cell frequency bands for the second subscription based on determining that the first subscription corresponds to the DDS. In another aspect, the UE may adjust a measurement report identifying the at least one neighboring intra-band network entity based on determining that the at least one neighboring intra-band network entity is available.
Abstract:
Techniques for controlling internal operation of a user equipment (UE) based on physical layer (PHY) parameters of a wireless network are disclosed. The PHY parameters may include a system bandwidth, an uplink-downlink configuration, a number of antennas, a number of carriers, etc. In one design, the UE may receive system information from the wireless network. The UE may obtain at least one PHY parameter of the wireless network, at a physical layer on the UE, based on the system information and/or other signaling. The UE may provide the at least one physical layer parameter to at least one entity (e.g., a memory and flow controller, a clock controller, a thermal mitigator, an application processor, etc.) within the UE for use to control internal operation of the UE.
Abstract:
Methods, systems, and devices for wireless communication at a user equipment (UE) are described. The UE may identify a first set of bands associated with a first subscription and a second set of bands associated with a second subscription. The UE may determine that at least a first band from the first set of bands and at least a second band from the second set of bands share a same set of radio frequency (RF) front-end resources. The UE may then refrain from communicating on a third band from the first set of bands while communicating on a remaining set of bands, where the third band may be associated with a secondary component carrier (SCC) of a multi-carrier communications scheme. Refraining from communicating on the third band may be based on the first and second bands sharing the RF front-end resources and the third band being associated with the SCC.
Abstract:
A method and apparatus for optimizing power consumption in multi-subscriber identity module (SIM) devices in a wireless communication system is disclosed. For example, a UE may determine, in a Multi-Subscriber Identity Module (SIM) Multi-Subscriber (MSMS) mode, whether one of a plurality of subscriptions is configured as a Default Data Subscription (DDS) or a non-DDS; and perform a carrier aggregation power saving mode procedure for the one of the plurality of subscriptions based on a determination that the one of the plurality of subscriptions is configured as the DDS or the non-DDS.