Abstract:
A dual frequency synthesizer architecture for a wireless device operating in a time division duplex (TDD) mode is disclosed. In an exemplary design, the wireless device includes first and second frequency synthesizers. The first frequency synthesizer generates a first oscillator signal used to generate a first/receive local oscillator (LO) signal at an LO frequency for the receiver. The second frequency synthesizer generates a second oscillator signal used to generate a second/transmit LO signal at the same LO frequency for the transmitter. The two frequency synthesizers generate their oscillator signals to obtain receive and transmit LO signals at the same LO frequency when the wireless device operates in the TDD mode.
Abstract:
Crosstalk amelioration systems and methods in a radio frequency front end (RFFE) communication system provide a host or master of an RFFE bus to monitor a weakly-driven data line in the RFFE bus while a clock line is actively providing a clock signal for trigger events at one or more slaves on the RFFE bus. If the host detects noise on the data line that looks like a sequence start condition (SSC) signal, the host further signals on the data line to negate the impact of the false SSC signal and thus avoid misinterpretation by the slaves.
Abstract:
Techniques for detecting and correcting phase discontinuity of a local oscillator (LO) signal are disclosed. In one design, a wireless device includes an LO generator and a phase detector. The LO generator generates an LO signal used for frequency conversion and is periodically powered on and off. The phase detector detects the phase of the LO signal when the LO generator is powered on. The detected phase of the LO signal is used to identify phase discontinuity of the LO signal. The wireless device may further include (i) a single-tone generator that generates a single-tone signal used to detect the phase of the LO signal, (ii) a downconverter that downconverts the single-tone signal with the LO signal and provides a downconverted signal used by the phase detector to detect the phase of LO signal, and (iii) phase corrector that corrects phase discontinuity of the LO signal in the analog domain or digital domain.
Abstract:
Crosstalk amelioration systems and methods in a radio frequency front end (RFFE) communication system provide a host or master of an RFFE bus to monitor a weakly-driven data line in the RFFE bus while a clock line is actively providing a clock signal for trigger events at one or more slaves on the RFFE bus. If the host detects noise on the data line that looks like a sequence start condition (SSC) signal, the host further signals on the data line to negate the impact of the false SSC signal and thus avoid misinterpretation by the slaves.
Abstract:
A dual frequency synthesizer architecture for a wireless device operating in a time division duplex (TDD) mode is disclosed. In an exemplary design, the wireless device includes first and second frequency synthesizers. The first frequency synthesizer generates a first oscillator signal used to generate a first/receive local oscillator (LO) signal at an LO frequency for the receiver. The second frequency synthesizer generates a second oscillator signal used to generate a second/transmit LO signal at the same LO frequency for the transmitter. The two frequency synthesizers generate their oscillator signals to obtain receive and transmit LO signals at the same LO frequency when the wireless device operates in the TDD mode.
Abstract:
Techniques for detecting and correcting phase discontinuity of a local oscillator (LO) signal are disclosed. In one design, a wireless device includes an LO generator and a phase detector. The LO generator generates an LO signal used for frequency conversion and is periodically powered on and off. The phase detector detects the phase of the LO signal when the LO generator is powered on. The detected phase of the LO signal is used to identify phase discontinuity of the LO signal. The wireless device may further include (i) a single-tone generator that generates a single-tone signal used to detect the phase of the LO signal, (ii) a downconverter that downconverts the single-tone signal with the LO signal and provides a downconverted signal used by the phase detector to detect the phase of LO signal, and (iii) phase corrector that corrects phase discontinuity of the LO signal in the analog domain or digital domain.