Abstract:
A method, an apparatus, and a computer program product are provided. The apparatus outputs a sinusoidal signal according to a first clock frequency, generates, a first digital signal having a 25% duty cycle based on the sinusoidal signal, generates a second digital signal having a 25% duty cycle based on the sinusoidal signal, combines the first digital signal and the second digital signal to generate a combined digital signal having a 50% duty cycle and a second clock frequency that is double the first clock frequency, and doubles the second clock frequency of the combined digital signal to generate an output signal having a third clock frequency that is quadruple the first clock frequency. The apparatus further generates a first control voltage and a second control voltage for the first buffer and a third control voltage for the second buffer based on the output signal.
Abstract:
A method, an apparatus, and a computer program product are provided. The apparatus outputs a first sinusoidal signal and a second sinusoidal signal according to a first clock frequency, generates, a first digital signal having a 25% duty cycle based on the first sinusoidal signal, generates a second digital signal having a 25% duty cycle based on the second sinusoidal signal, combines the first digital signal and the second digital signal to generate a combined digital signal having a 50% duty cycle and a second clock frequency that is double the first clock frequency, and doubles the second clock frequency of the combined digital signal to generate an output signal having a third clock frequency that is quadruple the first clock frequency. The apparatus further generates a control voltage for the first buffer and the second buffer based on the combined digital signal.
Abstract:
Certain aspects of the present disclosure provide techniques and apparatus for generating multiple oscillating signals. One example circuit generally includes a first voltage-controlled oscillator (VCO) having a first inductor and a second VCO having a second inductor in parallel with a third inductor, wherein the second and third inductors are disposed inside a loop of the first inductor and may behave as a magnetic dipole. The loop of the first inductor may be symmetrical, and a combined geometry of loops of the second and third inductors may be symmetrical. The coupling coefficient (k) between the first inductor and a combination of the second and third inductors may be small (e.g., k
Abstract:
A method and an apparatus for canceling EM coupling are provided. The apparatus includes a ring structure at least partially surrounding an EM circuit. A negative transconductance circuit is coupled to ends of the ring structure. The negative transconductance circuit is configured to cancel an EM coupling to the EM circuit at a frequency. The method includes generating a plurality of settings for a negative transconductance circuit and tuning the negative transconductance circuit to one of the plurality of settings for the negative transconductance circuit to cancel an EM coupling to an EM circuit at a frequency.