Abstract:
A microcontroller apparatus is provided with an instruction set for manipulating the behavior of the microcontroller. The apparatus and system is provided that enables a linearized address space that makes modular emulation possible. Direct or indirect addressing is possible through register files or data memory. Special function registers, including the Program Counter (PC) and Working Register (W), are mapped in the data memory. An orthogonal (symmetrical) instruction set makes possible any operation on any register using any addressing mode. Consequently, two file registers to be used in some two operand instructions. This allows data to be moved directly between two registers without going through the W register. Thus increasing performances and decreasing program memory usage.
Abstract:
A method is disclosed for testing a high speed microcontroller fabricated on a semiconductor chip, and for testing relatively low speed functions of a liquid crystal display (LCD) module on the chip that drives an off-chip LCD for an external system to be controlled by the microcontroller with a plurality of discrete analog voltage levels for performing the LCD functions. Digital values are multiplexed in time slots of a test waveform to simulate in high speed digital format of a test mode the low speed timing, relative magnitude and functionality of analog voltage levels used to drive the LCD; A high speed driver is selectively coupled to a pin of the chip, to which the discrete analog voltage levels are normally applied at low speed to drive the LCD, and the test waveform is applied to the high speed driver. The digital values and timing that appear on the pin are then monitored as an indication of proper functionality of the LCD module. The high speed driver is switched out and the normal low speed LCD driver is switched back for return to an LCD user mode when the test mode is completed. Monitoring the pin with a digital tester allows verification that pin pulses in predetermined time slots indicate the corresponding analog voltage level is being applied at the proper time during normal operation of the LCD module, and digitally testing of continuity in an analog channel. A transistor normally employed on the chip for electrostatic discharge protection is activated to selectively couple the high speed driver to the pin for the high speed testing mode.
Abstract:
A microcontroller apparatus is provided with an instruction set for manipulating the behavior of the microcontroller. The apparatus and system is provided that enables a linearized address space that makes modular emulation possible. Direct or indirect addressing is possible through register files or data memory. Special function registers, including the Program Counter (PC) and Working Register (W), are mapped in the data memory. An orthogonal (symmetrical) instruction set makes possible any operation on any register using any addressing mode. Consequently, two file registers to be used in some two operand instructions. This allows data to be moved directly between two registers without going through the W register. Thus increasing performance and decreasing program memory usage.
Abstract:
A constant current output sink or source eliminates a current limiting series resistor for a light emitting diode (LED) and maintains a constant light intensity from the LED for all operating and manufacturing variables of a digital device since the current through the LED is maintained at a constant value. The constant current output sink or source may be programmable for selection of a constant current value from a plurality of constant current values available.
Abstract:
Adaptive electrostatic discharge (ESD) protection of a device interface has very good ESD robustness when it is handled or when installed into or removed from a system. And has robust immunity to DPI, electromagnetic interference (EMI) and the like, when it is operational in a system. There is a significant capacitive coupling between the drain and gate of a ESD protection metal oxide semiconductor (MOS) device to enhance ESD protection and lower snap back voltage thereof whenever there is no (or a low level) DPI on the external connection to be protected. Whereupon when a significant DPI/EMI signal is detected on the external connection, the capacitive coupling between the drain and gate of the MOS ESD protection device is disconnected, bypassed or attenuated so that DPI/EMI immunity of the device is enhanced.
Abstract:
An array of N-channel memory cells may be separated into independently programmable memory segments by creating multiple, electrically isolated P-wells upon which the memory segments are fabricated. The multiple, electrically isolated P-wells may be created, for example, by p-n junction isolation or dielectric isolation.
Abstract:
An electrostatic discharge (ESD) structure having increased voltage withstand at an output terminal of an integrated circuit device has a thin gate oxide layer metal oxide semiconductor (MOS) device coupled in series with a thicker gate oxide layer MOS device. The thin gate oxide layer MOS device may be controlled by a low voltage control circuit of the integrated circuit. The thicker gate oxide layer MOS device may be coupled to an output of the integrated circuit device or a bipolar transistor may be coupled between the output of the integrated circuit device and the thicker gate oxide layer MOS device. The thin gate oxide layer and thicker gate oxide layer MOS devices may be coupled in series.
Abstract:
Laser target practice using an ultra-violet light emitting laser that is pulsed on when a weapon trigger is pulled. The UV laser light pulse illuminates a spot on a target having a coating of phosphorescent material on a face thereof. The phosphorescent material within the illuminated spot glows for a certain time thereby visually indicating a location of the spot on the target. The UV laser light pulse may also illuminate a spot on a target having a photochromic paint coatings on a face thereof. The photochromic paint coatings within the illuminated spot changes color thereby indicating a location of the spot on the target.
Abstract:
Adaptive electrostatic discharge (ESD) protection of a device interface has very good ESD robustness when it is handled or when installed into or removed from a system. And has robust immunity to DPI, electromagnetic interference (EMI) and the like, when it is operational in a system. There is a significant capacitive coupling between the drain and gate of a ESD protection metal oxide semiconductor (MOS) device to enhance ESD protection and lower snap back voltage thereof whenever there is no (or a low level) DPI on the external connection to be protected. Whereupon when a significant DPI/EMI signal is detected on the external connection, the capacitive coupling between the drain and gate of the MOS ESD protection device is disconnected, bypassed or attenuated so that DPI/EMI immunity of the device is enhanced.
Abstract:
Adaptive electrostatic discharge (ESD) protection of a device interface has very good ESD robustness when it is handled or when installed into or removed from a system. And has robust immunity to DPI, electromagnetic interference (EMI) and the like, when it is operational in a system. There is a significant capacitive coupling between the drain and gate of a ESD protection metal oxide semiconductor (MOS) device to enhance ESD protection and lower snap back voltage thereof whenever there is no (or a low level) DPI on the external connection to be protected. Whereupon when a significant DPI/EMI signal is detected on the external connection, the capa citive coupling between the drain and gate of the MOS ESD protection device is disconnected, bypassed or attenuated so that DPI/EMI immunity of the device is enhanced.