摘要:
In an embodiment, a processor includes multiple tiles, each including a core and a tile cache hierarchy. This tile cache hierarchy includes a first level cache, a mid-level cache (MLC) and a last level cache (LLC), and each of these caches is private to the tile. A controller coupled to the tiles includes a cache power control logic to receive utilization information regarding the core and the tile cache hierarchy of a tile and to cause the LLC of the tile to be independently power gated, based at least in part on this information. Other embodiments are described and claimed.
摘要:
In an embodiment, a processor includes multiple tiles, each including a core and a tile cache hierarchy. This tile cache hierarchy includes a first level cache, a mid-level cache (MLC) and a last level cache (LLC), and each of these caches is private to the tile. A controller coupled to the tiles includes a cache power control logic to receive utilization information regarding the core and the tile cache hierarchy of a tile and to cause the LLC of the tile to be independently power gated, based at least in part on this information. Other embodiments are described and claimed.
摘要:
Methods and apparatus for implementing active interconnect link power management using an adaptive low-power link-state entry policy. The power state of an interconnect link or fabric is changed in response to applicable conditions determined by low-power link-state entry policy logic in view of runtime traffic on the interconnect link or fabric. The low-power link-state policy logic may be configured to include consideration of operating system input and Quality of Service (QoS) requirements for applications and devices employing the link or fabric, and device latency tolerance requirements.
摘要:
Methods and apparatus for implementing active interconnect link power management using an adaptive low-power link-state entry policy. The power state of an interconnect link or fabric is changed in response to applicable conditions determined by low-power link-state entry policy logic in view of runtime traffic on the interconnect link or fabric. The low-power link-state policy logic may be configured to include consideration of operating system input and Quality of Service (QoS) requirements for applications and devices employing the link or fabric, and device latency tolerance requirements.
摘要:
A system and method for maintaining connectivity between a host system running an Always-On-Always-Connected (AOAC) application and an associated remote application server includes determining a timing interval Ti for sending keep-alive messages. The timing interval Ti may be determined by selecting a value for a timeout (Ti) to a value between a maximum timeout (Tmax) and a minimum timeout (Tmin), transmitting a keep-alive message, at an interval based on Ti, across a network connection between a client platform running an Always-On-Always-Connected (AOAC) application and a remote application server associated with the AOAC application, checking a status of the network connection, increasing the value for Tmin if the network connection is still active and decreasing the value for Tmax if the network connection has been dropped.
摘要:
A system and method for maintaining connectivity between a host system running an Always-On-Always-Connected (AOAC) application and an associated remote application server. The system further includes circuitry configured to establish a communication link between the host system and the remote application server. The circuitry is configured periodically transmit keep-alive messages to the remote application server after the host system transitions to and remains in a low-power state. The keep-alive messages are configured to maintain connectivity and presence of the AOAC application with the remote application server while the host system is in the low-power state.
摘要:
A system and method for maintaining connectivity between a host system running an Always-On-Always-Connected (AOAC) application and an associated remote application server includes determining a timing interval Ti for sending keep-alive messages. The timing interval Ti may be determined by selecting a value for a timeout (Ti) to a value between a maximum timeout (Tmax) and a minimum timeout (Tmin), transmitting a keep-alive message, at an interval based on Ti, across a network connection between a client platform running an Always-On-Always-Connected (AOAC) application and a remote application server associated with the AOAC application, checking a status of the network connection, increasing the value for Tmin if the network connection is still active and decreasing the value for Tmax if the network connection has been dropped.
摘要:
A system and method for maintaining connectivity between a host system running an Always-On-Always-Connected (AOAC) application and an associated remote application server. The system further includes circuitry configured to establish a communication link between the host system and the remote application server. The circuitry is configured periodically transmit keep-alive messages to the remote application server after the host system transitions to and remains in a low-power state. The keep-alive messages are configured to maintain connectivity and presence of the AOAC application with the remote application server while the host system is in the low-power state.
摘要:
A system and method for maintaining connectivity between a host system running an Always-On-Always-Connected (AOAC) application and an associated remote application server. The system further includes circuitry configured to establish a communication link between the host system and the remote application server. The circuitry is configured periodically transmit keep-alive messages to the remote application server after the host system transitions to and remains in a low-power state. The keep-alive messages are configured to maintain connectivity and presence of the AOAC application with the remote application server while the host system is in the low-power state.
摘要:
A system and method for maintaining connectivity between a host system running an Always-On-Always-Connected (AOAC) application and an associated remote application server. The system further includes circuitry configured to establish a communication link between the host system and the remote application server. The circuitry is configured periodically transmit keep-alive messages to the remote application server after the host system transitions to and remains in a low-power state. The keep-alive messages are configured to maintain connectivity and presence of the AOAC application with the remote application server while the host system is in the low-power state.