摘要:
The present invention includes a method for a combined use of a local RTK system and a regional, wide-area, or global differential carrier-phase positioning system (WADGPS) in which disadvantages associated with the RTK and the WADGPS navigation techniques when used separately are avoided. The method includes using a known position of a user receiver that has been stationary or using an RTK system to initialize the floating ambiguity values in the WADGPS system when the user receiver is moving. Thereafter, the refraction-corrected carrier-phase measurements obtained at the user GPS receiver are adjusted by including the corresponding initial floating ambiguity values and the floating ambiguity values are treated as well known (small variance) in subsequent processes to position the user receiver in the WADGPS system.
摘要:
The present invention includes a method for a combined use of a local positioning system, a local RTK system and a regional, wide-area, or global differential carrier-phase positioning system (WADGPS) in which disadvantages associated with the local positioning system, the RTK and the WADGPS navigation techniques when used separately are avoided. The method includes determining a first position of the object based on information from the WADGPS, and determining a second position of the object based on position information from a local positioning/RTK positioning system. Thereafter, position determined by the WADGPS and the position determined by the local positioning/RTK positioning system are compared. The WADGPS position is used for navigating the object when the WADGPS position and local positioning/position differ by more than a predefined threshold, and using the local positioning/RTK position for navigating the object when the WADGPS position and local positioning/RTK position differ by less than the predefined threshold.
摘要:
The present invention includes a method for performing backup dual-frequency navigation during a brief period when one of two frequencies relied upon by dual-frequency navigation is unavailable. The method includes synthesizing the code and carrier-phase measurements on the unavailable frequency using the carrier-phase measurements on the retained frequency and a model of ionospheric refraction effects, which is updated when measurements on both frequencies are available.
摘要:
The present invention includes a method for a combined use of a local RTK system and a regional, wide-area, or global differential carrier-phase positioning system (WADGPS) in which disadvantages associated with the RTK and the WADGPS navigation techniques when used separately are avoided. The method includes using a known position of a user receiver that has been stationary or using an RTK system to initialize the floating ambiguity values in the WADGPS system when the user receiver is moving. Thereafter, the refraction-corrected carrier-phase measurements obtained at the user GPS receiver are adjusted by including the corresponding initial floating ambiguity values and the floating ambiguity values are treated as well known (small variance) in subsequent processes to position the user receiver in the WADGPS system.
摘要:
A method for generating satellite clock corrections for a WADGPS network computers satellite clock corrections after removing other substantial error components. Errors caused by the ionosphere refraction effects are removed from GPS measurements taken at reference stations using dual-frequency GPS measurements. The multipath noise are removed by smoothing of GPS pseudorange code measurements with carrier-phase measurements. The tropospheric refraction effect can be largely removed by modeling, and if desired, can be improved by the use of small stochastic adjustments included in the computation of the clock correction. After removing the above error factors, satellite clock corrections are computed for individual reference stations, and an average clock correction is formed for each of a plurality of satellites by taking an average or weighted average of the satellite clock corrections over reference stations to which the satellite is visible.
摘要:
Initial data is acquired on an agricultural product associated with a harvesting time. The acquired initial data is transmitted (e.g., handed off) via an electromagnetic signal or wireless communication to an intermediate data processing system associated with a handler of the agricultural product. Additional data is appended to the acquired initial data received at the intermediate data processing system to form composite data. The composite data is transmitted via an electromagnetic signal or wireless communication to at least one of a receiver and a data processing system for processing or storing the composite data. The composite data is transferred to or made available to a data management system, which may be accessible to one or more users who seek access to at least one of the initial data, the additional data, and the composite data on the agricultural product or a derivative thereof.
摘要:
The present invention is directed to a method for acquiring elevation data for an area. The method includes using a GPS receiver to map ground elevations while driving back and forth over an area and periodically recording position, elevation, and time. Then, at least one track is made across the parallel tracks so that the cross track intersects the parallel tracks. The data obtained is processed and elevation data from the cross track is used to adjust elevation data for the parallel tracks, compensating for elevation drift in measurements recorded by the GPS receiver. The adjusted data for the entire area is processed using the method of the present invention to obtain an elevation map for the area.
摘要:
A method and system for tracing the identity of an agricultural product comprises holding an agricultural product in a container. The container is associated with a tag. Harvesting data is obtained. The harvesting data is associated with the harvesting of an agricultural product. The harvesting data is stored as stored information by transmitting the harvesting data for storage as stored information associated with a data management system. Primary transportation data is obtained. The primary transportation data is associated with the transportation of the product to primary storage. The primary transportation data is added to the stored information.
摘要:
Structure for converting a conventional manual steering system of an off-road vehicle to an automatic steering system utilizing remote signals. A stepper motor is connected through a belt or chain drive to a drive mounted on the upper end of a steering shaft. The stepper motor is connected to a microprocessor and moves with the steering shaft in both a manual steering mode and an automatic steering mode. An encoder provides a signal to a microprocessor that changes operation to the manual mode if the number of steps reported by the encoder is different than what is expected. An assembly including alternate steering wheel, shaft pulley, adapter insert and stepper motor is easily connected to the steering column. A drive motor may also be directly connected to the steering shaft.
摘要:
A method and apparatus for synthesizing a stable reference signal of a desired frequency within a spread spectrum receiver is disclosed herein. The spread spectrum receiver is designed for use in conjunction with a global positioning system (GPS) receiver, and operates to receive broadcast differential GPS correction information. The present frequency synthesis technique contemplates generating a sequence of timing signals within the GPS receiver on the basis of GPS satellite signals received thereby, and providing the timing signals to the signal receiver. Within the signal receiver, the signal cycles of a local oscillator occurring between ones of the timing signals are counted. The frequency of the local oscillator is then determined by dividing the counted cycles of the local oscillator by one of the known time intervals. The determined frequency of output signals produced by the local oscillator is then scaled so as necessary to produce the reference signal of desired frequency. This allows precisely controlled reference frequencies to be obtained irrespective of the existence of frequency instability within the local oscillator. In a preferred implementation, the stable reference signals are employed during acquisition of differential GPS correction signals received by the spread spectrum receiver. In particular, the desired reference frequency is incrementally adjusted during the process of searching for and acquiring the exact frequency of the incident differential GPS correction signals. The spread spectrum receiver is disposed to provide differential GPS correction information extracted from the acquired differential GPS correction signals to the GPS receiver.