Abstract:
A vehicular frame assembly is manufactured by initially providing a vehicular frame assembly that is formed from a plurality of structural members, each having an inherent torsional rigidity. Then, a desired inherent torsional rigidity can be determined for at least one of the plurality of structural members. Lastly, the at least one of the plurality of structural members can be deformed to achieve the desired inherent torsional rigidity. Alternatively, the vehicular frame assembly can be manufactured by initially providing a plurality of structural members, each having an inherent torsional rigidity. A desired inherent torsional rigidity can be determined for at least one of the plurality of structural members, and the at least one of the plurality of structural members is deformed to achieve the desired inherent torsional rigidity. Lastly, the plurality of structural members can be assembled to form the vehicular frame assembly.
Abstract:
A vehicular body and frame assembly includes a plurality of individual frame modules that can be selectively connected together to form customized assemblies. Each of the individual modules can be constructed in any desired manner. To connect the modules together, each module has cooperating first and second connecting structures provided thereon. The first connecting structures are designed to connect to the second connecting structures. For example, the first connecting structures may be formed as hooks provided on the lower portions of the frame modules, and the second connecting structures may be formed as pins provided on the lower portions of the frame modules upon which the hooks can be engaged. The frame modules can be connected together in this manner and pivoted to a mating position, wherein they can be positively retained together by bolts or other fasteners that extend between the mating frame modules.
Abstract:
A method for manufacturing a vehicle frame assembly includes the initial steps of providing first and second structural components, disposing portions of the first and second structural components in an overlapping relationship, and generating an electromagnetic field that causes at least one of the overlapping portions of the first and second structural components to move into contact with the other of the overlapping portions of the first and second structural components at a high velocity so as to be joined together to form a joint. Third and fourth structural components are provided. The third and fourth structural components are joined to the first and second structural components together to form a vehicle frame assembly.
Abstract:
A storage box for a pickup truck or similar vehicle is formed from a combination of metallic and composite materials. The storage box includes an internal storage box frame that is formed from a plurality of metallic tubular components that are secured together, such as by magnetic pulse welding techniques. The metallic tubular pieces can be formed from steel, aluminum, and the like, or any combination thereof. The storage box further includes one or more panels that are formed from composite materials, such as urethane, that are secured to the metallic storage box frame. The composite panels may secured to the metallic storage frame box by molding the composite material directly about the metallic storage box frame. Alternatively, the composite panels may be formed as separate pieces that are connected to the metallic storage box frame. The combination of the internal metallic storage box frame and the external composite storage box panels provides a relatively light weight storage box that is resistant to dents and other deformations during use.
Abstract:
A method for manufacturing a vehicle frame assembly includes the initial steps of providing first and second structural components, disposing portions of the first and second structural components in an overlapping relationship, and generating an electromagnetic field that causes at least one of the overlapping portions of the first and second structural components to move into contact with the other of the overlapping portions of the first and second structural components at a high velocity so as to be joined together to form a joint. Third and fourth structural components are provided. The third and fourth structural components are joined to the first and second structural components together to form a vehicle frame assembly.
Abstract:
An apparatus for manufacturing vehicle frame components using composite fiber pultrusion techniques includes one or more sources of a fibrous material. A bath or similar structure is provided for applying a resin material to the fibrous materials from the sources. Following the application of the resin, the fibrous materials are then pulled through a die. The die is formed having an opening therethrough which corresponds in shape to the desired cross sectional shape of the vehicle frame component to be manufactured. As the fibrous materials are pulled through the die, they conform to the shape of the opening formed therethrough. Because of the resin applied thereto, the fibrous materials adhere to one another to form a pultrusion which retains the shape of the opening formed through the die. The formed pultrusion is then pulled through a curing oven which heats the resin to a predetermined curing temperature, causing it to harden a rigid condition. As a result, the pultrusion as a whole acquires a desired rigidity. Movement of the fibrous materials and of the pultrusion is effected by means of a pulling device. Following passage through the pulling device, the pultrusion is cut to desired lengths by a conventional cutting machine. Additionally, openings of desired sizes and shapes may be formed in the pultrusion by a convention perforation machine. Pultrusions of different shapes and sizes may be used to form side rails which are permanently joined together by transversely extending cross members by adhesive to form the vehicle frame component.
Abstract:
A vehicular frame assembly is manufactured by initially providing a vehicular frame assembly that is formed from a plurality of structural members, each having an inherent torsional rigidity. Then, a desired inherent torsional rigidity can be determined for at least one of the plurality of structural members. Lastly, the at least one of the plurality of structural members can be deformed to achieve the desired inherent torsional rigidity. Alternatively, the vehicular frame assembly can be manufactured by initially providing a plurality of structural members, each having an inherent torsional rigidity. A desired inherent torsional rigidity can be determined for at least one of the plurality of structural members, and the at least one of the plurality of structural members is deformed to achieve the desired inherent torsional rigidity. Lastly, the plurality of structural members can be assembled to form the vehicular frame assembly.
Abstract:
An apparatus and method of applying a lubricating material to an outer surface of a workpiece. Initially, a workpiece is provided that is preferably formed from a closed channel structural member having a circular or box-shaped cross sectional shape. Lubricating material is applied to an outer surface of the workpiece. In a second step of the method, the workpiece may be heat treated. The workpiece is then heated to elevate the temperature of the workpiece so as to cause the lubricating material to dry substantially immediately on the workpiece, thereby providing a coating of lubricating material having a substantially uniform thickness. In a fourth step of the method, a deforming process is performed on the workpiece during the period of time following the heat treatment process, and after applying the lubricating material, in which the workpiece retains the full or partial softening characteristics.
Abstract:
A vehicle body and frame assembly includes a pair of longitudinally extending side rails having a plurality of transverse cross members extending therebetween. The cross member is a multiple piece structure, including a central portion having a pair of end portions secured thereto. The central portion of the cross member is preferably formed from a first metallic material, while the end portions are preferably both formed from a second metallic material. The end portions of the cross member are preferably formed from the same metallic material as the respective side rails to which they are secured. The end portions of the cross member can be secured to the ends of the central portion by any desired process, such as by magnetic pulse welding. Similarly, the cross member can be secured to the side rails by any desired process, such as by magnetic pulse welding or by conventional welding. The end portions of the cross member can extend either partially or completely through the respective side rails. If desired, a reinforcing and positioning collar can be secured to the end portions of the cross member adjacent to each of the side rails.
Abstract:
A vehicular space frame assembly includes a plurality of structural components that are secured together to define an enclosed three-dimensional space. A plurality of body closure panels, such as a pair of door closure panels, a front windshield closure panel, a rear windshield closure panel, and a floor pan closure panel, are mounted on the structural components. Each of the body closure panels is a generally flat panel having one or more open spaces provided therein to support other components of the vehicular body on the space frame assembly. The body closure panels may have respective recesses formed therein that receive portions of the associated structural components therein. The recesses may be sized and shaped to receive the receive these portions in a snap fit relationship. One or more gaskets or other conventional sealing devices may be disposed between each of the body closure panels and the associated structural components of the vehicular space frame assembly. Additionally, other gaskets may be provided on the body closure panels to provide a sealed engagement with the other components of the vehicular body and frame assembly.