Abstract:
A computer-implemented method is provided for a handheld diabetes-management device to establish a data connection with a Continua manager. The method includes: receiving a request to establish a new data connection with a computing device, where the computing device is physically separated from the diabetes-management device and operates as a manager in accordance with IEEE standard 11073; determining whether the diabetes-management device has an existing data connection with a medical device that is physically separated from the diabetes-management device; terminating the existing data connection with the medical device in response to the determination that the diabetes-management device has an existing connection with the medical device; and establishing a new data connection with the computing device in accordance with IEEE standard 11073.
Abstract:
A private extension of the IEEE 11073 standard for enabling pass-thru communication between a external computing device and a medical device via a diabetes management device is disclosed herein. Within this context, a diabetes management system for configured to allow pass thru communication is described. The system includes a diabetes management device in communication with a external computing device and the first medical device. A pass-thru module of the diabetes management device uses a set of pass-thru commands for establishing a pass-thru communication path and enabling communication between the external computing device and the first medical device, and wherein the set of pass-through commands is defined in compliance with a communication protocol defined in accordance with IEEE standard 11073-20601.
Abstract:
A computer-implemented diabetes management system is provided that supports enhanced security between a diabetes care manager in data communication with a medical device. The diabetes care manager includes: a first application that operates to request access to a first security role supported by the medical device, where the first security role is associated with a first set of commands for accessing data on the medical device that are defined as a private extension of the communication protocol; and a second application that operates to request access to a second security role supported by the medical device, where the second security role is associated with a second set of commands for accessing data on the medical device that are defined as a private extension of the communication protocol. The second set of commands has one or more commands that are mutually exclusive from the first set of commands.
Abstract:
A handheld diabetes manager has a flight mode that cooperatively interacts with an external medical device and includes a port configured to receive a test strip for blood glucose measurement, a blood glucose measurement module operable with the test strip, a communications module and a user interface module. The communications module selectively communicates wirelessly with an external medical device. The user interface module communicates with the blood glucose measurement module and the communications module and operates to provide a graphical user interface on a display of the diabetes manager. The graphical user interface includes a screen with a flight mode option. When the flight mode option is enabled and the external medical device is paired and currently communicating with the diabetes manager, the user interface module interacts with the communication module to send a command to the external medical device to turn off wireless communication of the external medical device.
Abstract:
A computer-implemented method is provided for a handheld diabetes-management device to establish a data connection with a Continua manager. The method includes: receiving a request to establish a new data connection with a computing device, where the computing device is physically separated from the diabetes-management device and operates as a manager in accordance with IEEE standard 11073; determining whether the diabetes-management device has an existing data connection with a medical device that is physically separated from the diabetes-management device; terminating the existing data connection with the medical device in response to the determination that the diabetes-management device has an existing connection with the medical device; and establishing a new data connection with the computing device in accordance with IEEE standard 11073.
Abstract:
A private extension of the IEEE 11073 standard for enabling pass-thru communication between a external computing device and a medical device via a diabetes management device is disclosed herein. Within this context, a diabetes management system for configured to allow pass thru communication is described. The system includes a diabetes management device in communication with a external computing device and the first medical device. A pass-thru module of the diabetes management device uses a set of pass-thru commands for establishing a pass-thru communication path and enabling communication between the external computing device and the first medical device, and wherein the set of pass-through commands is defined in compliance with a communication protocol defined in accordance with IEEE standard 11073-20601.
Abstract:
A handheld diabetes manager has a graphical user interface for displaying status of an external medical device and includes a port configured to receive a test strip and a blood glucose measurement module. The diabetes manager includes a communications module that selectively communicates via a wireless data link with an external medical device to receive status data pertaining to the operation of the external medical device, and a user interface module in data communication with the blood glucose measurement module and the communications module. The graphical user interface includes a status screen that presents data pertaining to a glucose measure determined by the blood glucose measurement module concurrently with the status data received from the external medical device, such that the status data of the external medical device is presented on the status screen only when the communication module is in data communication with the external medical device.
Abstract:
A diabetes care kit for providing diagnostics and therapy that is preconfigured to reduce initial setup by a user. The kit can include a handheld diabetes managing device and insulin pump. The handheld diabetes managing device and insulin pump can each be preloaded with an encryption key such that the handheld diabetes managing device and the insulin pump are paired and a secure bidirectional communication link exists between the handheld diabetes managing device and the insulin pump.
Abstract:
A diabetes care kit for providing diagnostics and therapy that is preconfigured to reduce initial setup by a user. The kit can include a handheld diabetes managing device and insulin pump. The handheld diabetes managing device and insulin pump can each be preloaded with an encryption key such that the handheld diabetes managing device and the insulin pump are paired and a secure bidirectional communication link exists between the handheld diabetes managing device and the insulin pump.