Method of operating a laboratory sample distribution system, laboratory sample distribution system, and laboratory automation system

    公开(公告)号:US20250147061A1

    公开(公告)日:2025-05-08

    申请号:US19017141

    申请日:2025-01-10

    Abstract: The disclosure refers to a method of operating a laboratory sample distribution system having: a plurality of carriers (4) having a number of n (n>3) carriers (4) each configured to carry one or more sample containers containing a sample to be analyzed by laboratory devices (3); a transport plane (1) configured to support to the plurality of carriers (4), wherein the transport plane (1) comprises a plurality of interconnected transport modules comprising a plurality of plane fields (5); and a driving device (13) configured to control movement of the plurality of carriers (4) along individual routes between the plurality of plane fields (5). The method comprises: moving the plurality of carriers (4) along the individual routes on the transport plane (1), wherein the moving, for each carrier, comprises executing at least once steps of reserving a route segment along the individual route, the route segment being provided by one or more plane fields of the plurality of plane fields (5), and moving the carrier (4) along the route segment; and preventing, for the plurality of carriers (4), a deadlock arrangement on the transport plane in which the plurality of carriers (4) block each other from further movement along the individual routes (6). The preventing is further comprising: determining, at a present operation time, a potential deadlock arrangement for the plurality of carriers (4) on the transport plane (1) at a future operation time, wherein the potential deadlock arrangement is assigned a number of n deadlock plane fields occupied by the plurality of carriers (4) in case of the potential deadlock arrangement; for a first carrier from the plurality of carriers (4) moving along a first individual route, reserving a first route segment ending with a first end plane field; and assigning a non-reserve flag to a next plane field which is next to the first end plane field along the first individual route. Further, a laboratory sample distribution system, and a laboratory automation system are provided.

    TRANSGLUTAMINASE SUBSTRATES FOR LABELING

    公开(公告)号:US20250147024A1

    公开(公告)日:2025-05-08

    申请号:US18505075

    申请日:2023-11-08

    Abstract: Fusion polypeptides are disclosed which are substrates for Kutzneria albida transglutaminase. The fusion polypeptides comprise one or more FKBP chaperone(s) and a target polypeptide. Each of these elements is separated from the neighboring element by a linker amino acid sequence. It was found that inserting glutamic acid containing transglutaminase recognition motifs into the linker amino acid chains is advantageous. Subsequent labeling reactions catalyzed by the transglutaminase surprisingly provide labeled fusion polypeptides have superior properties when compared with chemically random-labeled fusion polypeptides of similar design. Assays and kits are provided for in vitro detection of target antibodies in samples.

    MEANS AND METHODS APPLYING sFlt-1/PIGF OR ENDOGLIN/PIGF RATIO TO RULE OUT ONSET OF PREECLAMPSIA WITHIN A CERTAIN TIME PERIOD

    公开(公告)号:US20250116675A1

    公开(公告)日:2025-04-10

    申请号:US18798760

    申请日:2024-08-08

    Abstract: The present invention concerns the field of diagnostic assays for prenatal diagnosis of preeclampsia. In particular, it relates to a method for diagnosing whether a pregnant subject is not at risk for preeclampsia within a short window of time comprising a) determining the amount of at least one angiogenesis biomarker selected from the group consisting of sFlt-1, Endoglin and PlGF in a sample of said subject, and b) comparing the amount with a reference, whereby a subject being not at risk for developing preeclampsia within a short period of time is diagnosed if the amount is identical or decreased compared to the reference in the cases of sFlt-1 and Endoglin and identical or increased in the case of PlGF, wherein said reference allows for making the diagnosis with a negative predictive value of at least about 98%. Further contemplates are devices and kits for carrying out said method.

    FEDERATED LEARNING OF MEDICAL VALIDATION MODEL

    公开(公告)号:US20250037861A1

    公开(公告)日:2025-01-30

    申请号:US18696634

    申请日:2021-11-01

    Abstract: A computer-implemented method is provided that includes transmitting, by a master node to a plurality of computing nodes, definition information about an initial medical validation model (410): performing, by the master node, a federated learning process together with the plurality of computing nodes (420), to jointly train the initial medical validation model using respective processed local training datasets available at the plurality of computing nodes, the respective local training datasets being processed by the plurality of computing nodes based on the definition information; and determining, by the master node, a final medical validation model based on a result of the federated learning process (430). Through the solution, by means of federated learning, it addresses the data security and privacy concerns from local sites owning.

    MR-PROADM MARKER PANELS FOR EARLY DETECTION OF SEPSIS

    公开(公告)号:US20250035629A1

    公开(公告)日:2025-01-30

    申请号:US18696730

    申请日:2022-09-28

    Abstract: The present invention concerns the field of diagnostics. Specifically, it relates to a method for assessing a subject with suspected infection comprising the steps of determining the amount of a first biomarker in a sample of the subject, said first biomarker being MR-proADM, determining the amount of a second biomarker in a sample of the subject, wherein said second biomarker is selected from the group consisting of: sFlt-1, GDF15 and ESM1, comparing the amounts of the biomarkers to references for said biomarkers and/or calculating a score for assessing the subject with suspected infection based on the amounts of the biomarkers, and assessing said subject based on the comparison and/or the calculation. The invention also relates to the use of a first biomarker being MR-proADM and a second biomarker selected from the group consisting of: sFlt-1, GDF15 and ESM1, or a detection agent specifically binding to said first biomarker and a detection agent specifically binding to said second biomarker for assessing a subject with suspected infection. Moreover, the invention further relates to a computer-implemented method for assessing a subject with suspected infection and a device and a kit for assessing a subject with suspected infection.

    Method and system to localize a carrier on a laboratory transport system

    公开(公告)号:US12196772B2

    公开(公告)日:2025-01-14

    申请号:US17008778

    申请日:2020-09-01

    Abstract: A method to localize a carrier on a laboratory transport system is presented. The laboratory transport system comprises a carrier associated with an identity, a multi-lane transport module, and a control unit. The carrier comprises a signal transmitter configured to transmit a signal comprising information about the identity. The multi-lane transport module comprises a transport surface comprising a first and a second transport lane as well as a first signal receiver and a second signal receiver each configured to receive the transmitted signal. Based on received signal strengths, the control unit localizes the carrier on one of the transport lanes of the multi-lane transport module.

    DETECTION OF AIR BUBBLES IN OPTICAL DETECTION UNIT

    公开(公告)号:US20240426765A1

    公开(公告)日:2024-12-26

    申请号:US18755464

    申请日:2024-06-26

    Abstract: An in-vitro diagnostic (IVD) analyzer 200 comprising an optical detection unit 217 comprising a cuvette 214 for the optical measurement of a biological sample 2, 2′ is herein disclosed. The IVD analyzer 200 further comprises a piezo actuator 218 arranged on one side of the cuvette 214 configured to transmit ultrasonic waves 254, 254′ through the cuvette 214, a piezo receiver 218′ arranged on the opposite side of the cuvette 214 configured to receive ultrasonic waves 255, 255′, 255″ transmitted through the cuvette 214 and a controller 250 configured to operate according to either a lysis operating mode (L) or an air-detection operating mode (AD). According to the lysis operating mode (L) the piezo actuator 218 is configured to transmit ultrasonic waves 254′ through the cuvette 214 for disrupting cellular particles contained in the biological sample 2. According to the air-detection operating mode (AD) the piezo actuator 218 is configured to transmit ultrasonic waves 254 through the cuvette 214 and the controller 250 is configured to correlate changes in amplitude and/or shifts of phase of the ultrasonic waves 255, 255′, 255″ received by the piezo receiver 218′ relative to reference values with an eventual presence and quantity of air 3 in the cuvette 214, in order to determine if the optical measurement of the biological sample 2, 2′ is affected by the presence of air 3. A respective automated method of operating the in-vitro diagnostic analyzer 200 in order to determine if the optical measurement of the biological sample 2, 2′ is affected by the presence of air is herein also disclosed.

    METHOD FOR IMPROVING CROSS-FLOW FILTRATION AND CROSS-FLOW FILTRATION SYSTEM

    公开(公告)号:US20240409436A1

    公开(公告)日:2024-12-12

    申请号:US18810797

    申请日:2024-08-21

    Abstract: A method of cross-flow filtering wastewater from a diagnostic apparatus or a laboratory analyser, wherein the wastewater comprises nanoparticles and/or microparticles, and the wastewater is streaming in a laminar flow across a surface of a filter membrane, the method comprising: (a) streaming the wastewater across the surface of the filter membrane with a flow rate, so that the flow of the wastewater is a laminar flow with a Reynolds number (Re) of smaller than 500; (b) streaming the wastewater in pulse cycles across the surface of the filter membrane, wherein each pulse cycle comprises one active phase in which the wastewater is under a duty pressure and one inactive phase in which the wastewater is under an inactive pressure, wherein the inactive pressure is no more than 10% of the duty pressure and the active phases have a duration of greater than 50% of the corresponding pulse cycles; and (c) separating the nanoparticles and/or microparticles from the wastewater when the wastewater passes through the filter membrane. Also described is a cross-flow filtration system configured for performing the method.

Patent Agency Ranking